JEE MAIN - Mathematics (2023 - 29th January Evening Shift - No. 15)
Let $$f$$ and $$g$$ be the twice differentiable functions on $$\mathbb{R}$$ such that
$$f''(x)=g''(x)+6x$$
$$f'(1)=4g'(1)-3=9$$
$$f(2)=3g(2)=12$$.
Then which of the following is NOT true?
Explanation
$$f''(x) = g''(x) + 6x$$
$$ \Rightarrow f'(x) = g'(x) + 3{x^2} + C$$
$$f'(1) = g'(1) + 3 + C$$
$$ \Rightarrow g = 3 + 3 + C \Rightarrow C = 3$$
$$ \Rightarrow f'(x) = g'(x) + 3{x^2} + 3$$
$$ \Rightarrow f(x) = g(x) + {x^2} + 3x + C'$$
$$x = 2$$
$$f(2) = g(2) + 14 + C'$$
$$12 = 4 + 14 + C'$$
$$ \Rightarrow C' = - 6$$
$$ \Rightarrow f(x) = g(2) + {x^3} + 3x - 6$$
$$f( - 2) = g( - 2) - 8 - 6 - 6$$
$$g( - 2) - f( - 2) = 20$$
$$f'(x) - g'(x) = 3{x^2} + 3$$
$$x \in ( - 1,1)$$
$$3{x^2} + 3 \in (0,6)$$
$$ \Rightarrow f'(x) - g'(x) \in (0,6)$$
$$f(x) - g(x) = {x^3} + 3x - 6$$
At $$x = - 1$$
$$|f( - 1) - g( - 1)| = 10$$
$$\therefore$$ Option (4) is false.
Comments (0)
