JEE MAIN - Mathematics (2023 - 25th January Morning Shift - No. 3)

Let $$x=2$$ be a local minima of the function $$f(x)=2x^4-18x^2+8x+12,x\in(-4,4)$$. If M is local maximum value of the function $$f$$ in ($$-4,4)$$, then M =
$$18\sqrt6-\frac{33}{2}$$
$$18\sqrt6-\frac{31}{2}$$
$$12\sqrt6-\frac{33}{2}$$
$$12\sqrt6-\frac{31}{2}$$

Explanation

$$ \begin{aligned} & f(x)=8 x^3-36 x+8 \\\\ & =4\left(2 x^3-9 x+2\right) \\\\ & =4(x-2)\left(2 x^2+4 x-1\right) \\\\ & =4(x-2)\left(x-\frac{-2+\sqrt{6}}{2}\right)\left(x-\frac{-2 \sqrt{6}}{2}\right) \end{aligned} $$

Local maxima occurs at $x=\frac{-2+\sqrt{6}}{2}=x_0$

$$ f\left(x_0\right)=12 \sqrt{6}-\frac{33}{2} $$

Comments (0)

Advertisement