JEE MAIN - Mathematics (2023 - 25th January Morning Shift - No. 17)

Let S = {1, 2, 3, 5, 7, 10, 11}. The number of non-empty subsets of S that have the sum of all elements a multiple of 3, is _____________.
Answer
43

Explanation

Elements of the type $3 \mathrm{k}=3$

Elements of the type $3 \mathrm{k}+1=1,7,9$

Elements of the type $3 \mathrm{k}+2=2,5,11$

Subsets containing one element $S_1=1$

Subsets containing two elements

$$ S_2={ }^3 C_1 \times{ }^3 C_1=9 $$

Subsets containing three elements

$$ \mathrm{S}_3={ }^3 \mathrm{C}_1 \times{ }^3 \mathrm{C}_1+1+1=11 $$

Subsets containing four elements

$$

\mathrm{S}_4={ }^3 \mathrm{C}_3+{ }^3 \mathrm{C}_3+{ }^3 \mathrm{C}_2 \times{ }^3 \mathrm{C}_2=11 $$

Subsets containing five elements

$$ \mathrm{S}_5={ }^3 \mathrm{C}_2 \times{ }^3 \mathrm{C}_2 \times 1=9 $$

Subsets containing six elements $\mathrm{S}_6=1$

Subsets containing seven elements $\mathrm{S}_7=1$

$$ \Rightarrow \text { sum }=43 $$

Comments (0)

Advertisement