JEE MAIN - Mathematics (2023 - 25th January Morning Shift - No. 11)

The points of intersection of the line $$ax + by = 0,(a \ne b)$$ and the circle $${x^2} + {y^2} - 2x = 0$$ are $$A(\alpha ,0)$$ and $$B(1,\beta )$$. The image of the circle with AB as a diameter in the line $$x + y + 2 = 0$$ is :
$${x^2} + {y^2} + 5x + 5y + 12 = 0$$
$${x^2} + {y^2} + 3x + 5y + 8 = 0$$
$${x^2} + {y^2} - 5x - 5y + 12 = 0$$
$${x^2} + {y^2} + 3x + 3y + 4 = 0$$

Explanation

JEE Main 2023 (Online) 25th January Morning Shift Mathematics - Circle Question 38 English Explanation
As $A$ and $B$ satisfy both line and circle we have $\alpha=0 \Rightarrow A(0,0)$ and $\beta=1$ i.e. $B(1,1)$

Centre of circle as $A B$ diameter is $\left(\frac{1}{2}, \frac{1}{2}\right)$ and radius $=\frac{1}{\sqrt{2}}$

$\therefore$ For image of $\left(\frac{1}{2} ; \frac{1}{2}\right)$ in $x+y+z$ we get $\frac{x-\frac{1}{2}}{1}=\frac{y-\frac{1}{2}}{1}=\frac{-2(3)}{2}$

$\Rightarrow$ Image $\left(-\frac{5}{2},-\frac{5}{2}\right)$

$\therefore $ Equation of required circle

$\left(x+\frac{5}{2}\right)^{2}+\left(y+\frac{5}{2}\right)^{2}=\frac{1}{2}$

$\Rightarrow x^{2}+y^{2}+5 x+5 y+\frac{50}{4}-\frac{1}{2}=0$

$\Rightarrow x^{2}+y^{2}+5 x+5 y+12=0$

Comments (0)

Advertisement