JEE MAIN - Mathematics (2023 - 24th January Morning Shift - No. 6)
Let $$y = y(x)$$ be the solution of the differential equation $${x^3}dy + (xy - 1)dx = 0,x > 0,y\left( {{1 \over 2}} \right) = 3 - \mathrm{e}$$. Then y (1) is equal to
2 $$-$$ e
3
1
e
Explanation
$x^{3} d y+x y d x-d x=0$
$\Rightarrow \frac{d y}{d x}=\frac{1-x y}{x^{3}}$
$\Rightarrow \frac{d y}{d x}+\frac{y}{x^{2}}=\frac{1}{x^{3}}$
I.F. $=e^{\int \frac{d x}{x^{2}}}=e^{-\frac{1}{x}}$
$\therefore \quad y e^{-\frac{1}{x}}=\int \frac{e^{-\frac{1}{x}}}{x^{3}} d x$
For RHS put $-\frac{1}{x}=t \Rightarrow \frac{d x}{x^{2}}=d t$
$\therefore y e^{-\frac{1}{x}}=-\int t e^{t} d t$
$\Rightarrow y e^{-\frac{1}{x}}=-\left[t e^{t}-e^{t}\right]+c$
$\Rightarrow y e^{-\frac{1}{x}}=\frac{e^{-\frac{1}{x}}}{x}+e^{-\frac{1}{x}}+c$
$$ \downarrow y\left(\frac{1}{2}\right)=3-e $$
$\Rightarrow(3-e) e^{-2}=2 e^{-2}+e^{-2}+c$
$\Rightarrow \quad c=-\frac{1}{e}$
For $y(1)$ put $x=1, c=-e^{-1}$ in equation (i) we get $y e^{-1}=e^{-1}+e^{-1}-e^{-1}$
$\Rightarrow y=1$
$\Rightarrow \frac{d y}{d x}=\frac{1-x y}{x^{3}}$
$\Rightarrow \frac{d y}{d x}+\frac{y}{x^{2}}=\frac{1}{x^{3}}$
I.F. $=e^{\int \frac{d x}{x^{2}}}=e^{-\frac{1}{x}}$
$\therefore \quad y e^{-\frac{1}{x}}=\int \frac{e^{-\frac{1}{x}}}{x^{3}} d x$
For RHS put $-\frac{1}{x}=t \Rightarrow \frac{d x}{x^{2}}=d t$
$\therefore y e^{-\frac{1}{x}}=-\int t e^{t} d t$
$\Rightarrow y e^{-\frac{1}{x}}=-\left[t e^{t}-e^{t}\right]+c$
$\Rightarrow y e^{-\frac{1}{x}}=\frac{e^{-\frac{1}{x}}}{x}+e^{-\frac{1}{x}}+c$
$$ \downarrow y\left(\frac{1}{2}\right)=3-e $$
$\Rightarrow(3-e) e^{-2}=2 e^{-2}+e^{-2}+c$
$\Rightarrow \quad c=-\frac{1}{e}$
For $y(1)$ put $x=1, c=-e^{-1}$ in equation (i) we get $y e^{-1}=e^{-1}+e^{-1}-e^{-1}$
$\Rightarrow y=1$
Comments (0)
