JEE MAIN - Mathematics (2023 - 24th January Morning Shift - No. 4)

$$\mathop {\lim }\limits_{t \to 0} {\left( {{1^{{1 \over {{{\sin }^2}t}}}} + {2^{{1 \over {{{\sin }^2}t}}}}\, + \,...\, + \,{n^{{1 \over {{{\sin }^2}t}}}}} \right)^{{{\sin }^2}t}}$$ is equal to
$${{n(n + 1)} \over 2}$$
n
n$$^2$$ + n
n$$^2$$

Explanation

$$ \begin{aligned} & \lim _{t \rightarrow 0}\left(1^{\operatorname{cosec}^2 t}+2^{\operatorname{cosec}^2 t}+\ldots \ldots . .+n^{\operatorname{cosec}^2 t}\right)^{\sin ^2 t} \\\\ & =\lim _{t \rightarrow 0} n\left(\left(\frac{1}{n}\right)^{\operatorname{cosec}^2 t}+\left(\frac{2}{n}\right)^{\operatorname{cosec}^2 t}+\ldots \ldots . .+1\right)^{\sin ^2 t} \\\\ & =\mathrm{n} \end{aligned} $$

Comments (0)

Advertisement