JEE MAIN - Mathematics (2023 - 24th January Morning Shift - No. 3)
The relation $$\mathrm{R = \{ (a,b):\gcd (a,b) = 1,2a \ne b,a,b \in \mathbb{Z}\}}$$ is :
reflexive but not symmetric
transitive but not reflexive
symmetric but not transitive
neither symmetric nor transitive
Explanation
Given,
(a, b) belongs to relation R if $$\gcd (a,b) = 1, 2a \ne b$$.
Here $$\gcd $$ means greatest common divisor. $$\gcd $$ of two numbers is the largest number that divides both of them.
(1) For Reflexive,
In $$aRa,\,\gcd (a,a) = a$$
$$\therefore$$ This relation is not reflexive.
(2) For Symmetric:Take $a=2, b=1 \Rightarrow \operatorname{gcd}(2,1)=1$ Also $2 a=4 \neq b$
Now $$\gcd (b,a) = 1$$ $ \Rightarrow \operatorname{gcd}(1,2)=1$
and 2b should not be equal to a
But here, $2 b=2=a$
$\Rightarrow \mathrm{R}$ is not Symmetric
(3) For Transitive:
Let $\mathrm{a}=14, \mathrm{~b}=19, \mathrm{c}=21$
$\operatorname{gcd}(\mathrm{a}, \mathrm{b})=1, 2a \ne b$
$\operatorname{gcd}(\mathrm{b}, \mathrm{c})=1, 2b \ne c$
$\operatorname{gcd}(\mathrm{a}, \mathrm{c})=7, 2a \ne c$
Hence not transitive
$\Rightarrow R$ is neither symmetric nor transitive.
Comments (0)
