JEE MAIN - Mathematics (2023 - 24th January Evening Shift - No. 6)
Explanation
$$\mathop {\lim }\limits_{x \to a} \left( {[x - 5] - [2x + 2]} \right) = 0$$
$$ \Rightarrow \mathop {\lim }\limits_{x \to a} \left( {[x] - 5 - [2x] - 2} \right) = 0$$
$$ \Rightarrow \mathop {\lim }\limits_{x \to a} [x] - [2x] - 7 = 0$$
Case 1 :
If $$a \in \left[ {n,n + {1 \over 2}} \right)$$
then $$\mathop {\lim }\limits_{x \to a} \left( {[x] - [2x] - 7} \right) = 0$$
$$ \Rightarrow n - 2n - 7 = 0$$
$$ \Rightarrow n = - 7$$
$$\therefore$$ $$a \in \left[ { - 7, - 6.5} \right)$$
Case 2 :
If $$a \in \left[ {n + {1 \over 2},n + 1} \right)$$
then $$\mathop {\lim }\limits_{x \to a} \left( {[x] - [2x] - 7} \right) = 0$$
$$ \Rightarrow n - (2n + 1) - 7 = 0$$
$$ \Rightarrow - n - 8 = 0$$
$$ \Rightarrow n = - 8$$
$$\therefore$$ $$a \in \left[ { - 7.5, - 7} \right)$$
$$R.H.L = \mathop {\lim }\limits_{x \to - {{7.5}^ + }} \left( {\left[ x \right] - \left[ {2x} \right] - 7} \right)$$
$$ = - 8 - \left( { - 15} \right) - 7$$
$$ = - 8 + 15 - 7 = 0$$
$$\eqalign{ & L.H.L = \mathop {\lim }\limits_{x \to - {{7.5}^ - }} \left( {\left[ x \right] - \left[ {2x} \right] - 7} \right) \cr \\ & = - 8 - \left( { - 16} \right) - 7 \cr \\ & = - 8 + 16 - 7 = 1 \cr} $$
$$ \therefore $$ R.H.L $$ \ne $$ L.H.L
$$ \therefore $$ At x = -7.5, limit does not exists.
$$\therefore$$ $$a \in \left( { - 7.5, - 6.5} \right)$$
Comments (0)
