JEE MAIN - Mathematics (2023 - 24th January Evening Shift - No. 21)
If the area of the region bounded by the curves $$y^2-2y=-x,x+y=0$$ is A, then 8 A is equal to __________
Answer
36
Explanation
Area enclosed by
$$ \begin{aligned} & y^{2}-2 y=-x \\\\ & x+y=0 \end{aligned} $$
_24th_January_Evening_Shift_en_21_1.png)
Area $=\int_{0}^{3}\left(2 y-y^{2}\right)-(-y) d y$
$$ =\int_{0}^{3}\left(3 y-y^{2}\right) d y $$
$$ \begin{aligned} & \left.=\frac{3 y^{2}}{2}-\frac{y^{3}}{3}\right]_{0}^{3} \\\\ & =\frac{27}{2}-9 \\\\ & =\frac{27-18}{2}=\frac{9}{2}=A \end{aligned} $$
$8 A=\frac{9}{2} \times 8=36$ sq. units
$$ \begin{aligned} & y^{2}-2 y=-x \\\\ & x+y=0 \end{aligned} $$
_24th_January_Evening_Shift_en_21_1.png)
Area $=\int_{0}^{3}\left(2 y-y^{2}\right)-(-y) d y$
$$ =\int_{0}^{3}\left(3 y-y^{2}\right) d y $$
$$ \begin{aligned} & \left.=\frac{3 y^{2}}{2}-\frac{y^{3}}{3}\right]_{0}^{3} \\\\ & =\frac{27}{2}-9 \\\\ & =\frac{27-18}{2}=\frac{9}{2}=A \end{aligned} $$
$8 A=\frac{9}{2} \times 8=36$ sq. units
Comments (0)
