JEE MAIN - Mathematics (2023 - 24th January Evening Shift - No. 14)
$$\int\limits_{{{3\sqrt 2 } \over 4}}^{{{3\sqrt 3 } \over 4}} {{{48} \over {\sqrt {9 - 4{x^2}} }}dx} $$ is equal to :
$${\pi \over 2}$$
$${\pi \over 3}$$
$${\pi \over 6}$$
$$2\pi $$
Explanation
$$
\int_{\frac{3 \sqrt{2}}{4}}^{\frac{3 \sqrt{3}}{4}} \frac{48}{\sqrt{9-4 x^2}} d x
$$
We have $\int \frac{d x}{\sqrt{a^2-x^2}}=\sin ^{-1} \frac{x}{a}+C$
Hence $\int_{\frac{3 \sqrt{2}}{4}}^{\frac{3 \sqrt{3}}{4}} \frac{48}{\sqrt{9-4 x^2}} d x=\frac{48}{2} \times\left[\sin ^{-1} \frac{2 x}{3}\right]_{\frac{3 \sqrt{2}}{4}}^{\frac{3 \sqrt{3}}{4}}$
$=24 \times\left[\sin ^{-1}\left(\frac{2}{3} \times \frac{3 \sqrt{3}}{4}\right)-\sin ^{-1}\left(\frac{2}{3} \times \frac{3 \sqrt{2}}{4}\right)\right]$ $=24 \times\left[\sin ^{-1} \frac{\sqrt{3}}{2}-\sin ^{-1} \frac{1}{\sqrt{2}}\right]$
$=24 \times\left(\frac{\pi}{3}-\frac{\pi}{4}\right)$
$=24 \times \frac{\pi}{12}=2 \pi$
We have $\int \frac{d x}{\sqrt{a^2-x^2}}=\sin ^{-1} \frac{x}{a}+C$
Hence $\int_{\frac{3 \sqrt{2}}{4}}^{\frac{3 \sqrt{3}}{4}} \frac{48}{\sqrt{9-4 x^2}} d x=\frac{48}{2} \times\left[\sin ^{-1} \frac{2 x}{3}\right]_{\frac{3 \sqrt{2}}{4}}^{\frac{3 \sqrt{3}}{4}}$
$=24 \times\left[\sin ^{-1}\left(\frac{2}{3} \times \frac{3 \sqrt{3}}{4}\right)-\sin ^{-1}\left(\frac{2}{3} \times \frac{3 \sqrt{2}}{4}\right)\right]$ $=24 \times\left[\sin ^{-1} \frac{\sqrt{3}}{2}-\sin ^{-1} \frac{1}{\sqrt{2}}\right]$
$=24 \times\left(\frac{\pi}{3}-\frac{\pi}{4}\right)$
$=24 \times \frac{\pi}{12}=2 \pi$
Comments (0)
