JEE MAIN - Mathematics (2023 - 24th January Evening Shift - No. 11)
Explanation
$${a_1},{a_2},{a_3},{a_4},{a_5},{a_6}$$ are in AP.
Let
$${a_1} = a$$
$${a_2} = a + d$$
$${a_3} = a + 2d$$
$${a_4} = a + 3d$$
$${a_5} = a + 4d$$
$${a_6} = a + 5d$$
Now Mean of $${a_1},{a_2},{a_3},{a_4},{a_5}$$ and $${a_6}$$ is
$$ = {{{a_1} + {a_2} + {a_3} + {a_4} + {a_5} + {a_6}} \over 6} = {{19} \over 2}$$
$$ \Rightarrow {{6a + 15d} \over 6} = {{19} \over 2}$$
$$ \Rightarrow 2a + 5d = 19$$ ...... (1)
Also, given,
$${a_1} + {a_3} = 10$$
$$ \Rightarrow a + a + 2d = 10$$
$$ \Rightarrow 2a + 2d = 10$$
$$ \Rightarrow a + d = 5$$ ..... (2)
From equation (1) and (2), we get $$a = 2$$ and $$d = 3$$
$$\therefore$$ AP is 2, 5, 8, 11, 14, 17
Now, Variance $$({\sigma ^2}) = {{\sum {x_i^2} } \over 6} - {\left( {\overline x } \right)^2}$$
$$ = {{{2^2} + {5^2} + {8^2} + {{11}^2} + {{14}^2} + {{17}^2}} \over 6} - {\left( {{{19} \over 2}} \right)^2}$$
$$ = {{105} \over 4}$$
$$\therefore$$ $$8{\sigma ^2} = 8 \times {{105} \over 4} = 210$$
Comments (0)
