JEE MAIN - Mathematics (2023 - 15th April Morning Shift - No. 6)

Let $[x]$ denote the greatest integer function and

$f(x)=\max \{1+x+[x], 2+x, x+2[x]\}, 0 \leq x \leq 2$. Let $m$ be the number of

points in $[0,2]$, where $f$ is not continuous and $n$ be the number of points in

$(0,2)$, where $f$ is not differentiable. Then $(m+n)^{2}+2$ is equal to :
3
6
2
11

Explanation

$$ \begin{aligned} & \text { Let } g(x)=1+x+[x]=\left\{\begin{array}{cc} 1+x ; & x \in[0,1) \\\ 2+x ; & x \in[1,2) \\ 5 ; & x=2 \end{array}\right. \\\\ & \lambda(x)=x+2[x]=\left\{\begin{array}{cc} x ; & x \in[0,1) \\ x+2 ; & x \in[1,2) \\ 6 ; & x=2 \end{array}\right. \\\\ & r(x)=2+x \\\\ & f(x)=\left\{\begin{array}{cc} 2+x ; & x \in[0,2) \\ 6 ; & x=2 \end{array}\right. \end{aligned} $$

$\mathrm{f}(\mathrm{x})$ is discontinuous only at $x=2 \Rightarrow \mathrm{m}=1$

$\mathrm{f}(\mathrm{x})$ is differentiable in $(0,2) \Rightarrow \mathrm{n}=0$

$$ (m+n)^2+2=3 $$

Comments (0)

Advertisement