JEE MAIN - Mathematics (2023 - 15th April Morning Shift - No. 2)

If $\int\limits_{0}^{1} \frac{1}{\left(5+2 x-2 x^{2}\right)\left(1+e^{(2-4 x)}\right)} d x=\frac{1}{\alpha} \log _{e}\left(\frac{\alpha+1}{\beta}\right), \alpha, \beta>0$, then $\alpha^{4}-\beta^{4}$ is equal to :
-21
21
19
0

Explanation

  1. The given integral is:

$$ I=\int_0^1 \frac{dx}{\left(5+2x-2x^2\right)\left(1+e^{2-4x}\right)} $$ .............(i)

  1. Perform a substitution, $x \rightarrow 1-x$. This gives:

$$ I=\int_0^1 \frac{dx}{\left(5+2(1-x)-2(1-x)^2\right)\left(1+e^{2-4(1-x)}\right)} $$

  1. Simplify the expression inside the integral:

$$ I=\int_0^1 \frac{dx}{\left(5+2-2x-2(1-2x+x^2)\right)\left(1+e^{4x -2}\right)} $$ ............(ii)

  1. Add the original integral (i) and the integral after substitution (ii):

$$ 2I=\int_0^1 \frac{dx}{5+2x-2x^2} $$

  1. Factor the quadratic expression in the denominator:

$$ 2I=\int_0^1 \frac{dx}{2\left(\frac{11}{4}-\left(x-\frac{1}{2}\right)^2\right)} $$

  1. To solve this integral, we can perform a change of variables using the substitution

    $x-\frac{1}{2}= \frac{\sqrt{11}}{2}\tan{u}$, then $dx=\frac{\sqrt{11}}{2}\sec^2{u} du$:

$$ I=\frac{1}{\sqrt{11}}\int \frac{\sec^2{u}}{1+\tan^2{u}}du $$

  1. Using the identity $\sec^2{u}=1+\tan^2{u}$:

$$ I=\frac{1}{\sqrt{11}}\int du = \frac{1}{\sqrt{11}}(u+C) $$

  1. Now we need to find the limits of the integral after the substitution. If $x=0$, then $u=\tan^{-1}\left(-\frac{1}{\sqrt{11}}\right)$. If $x=1$, then $u=\tan^{-1}\left(\frac{1}{\sqrt{11}}\right)$. So, the integral becomes:

$$ I=\frac{1}{\sqrt{11}}\left[\tan^{-1}\left(\frac{1}{\sqrt{11}}\right)-\tan^{-1}\left(-\frac{1}{\sqrt{11}}\right)\right] $$

  1. Using the properties of the arctangent function, we can rewrite the integral as:

$$ I=\frac{1}{\sqrt{11}} \ln\left(\frac{\sqrt{11}+1}{\sqrt{10}}\right) $$

  1. From this result, we have $\alpha=\sqrt{11}$ and $\beta=\sqrt{10}$. Now, we can find $\alpha^4 - \beta^4$:

$$ \alpha^4 - \beta^4 = (11)^2 - (10)^2 = 121 - 100 = 21 $$

Thus, $\alpha^4 - \beta^4 = 21$.

Comments (0)

Advertisement