JEE MAIN - Mathematics (2023 - 15th April Morning Shift - No. 2)
Explanation
- The given integral is:
$$ I=\int_0^1 \frac{dx}{\left(5+2x-2x^2\right)\left(1+e^{2-4x}\right)} $$ .............(i)
- Perform a substitution, $x \rightarrow 1-x$. This gives:
$$ I=\int_0^1 \frac{dx}{\left(5+2(1-x)-2(1-x)^2\right)\left(1+e^{2-4(1-x)}\right)} $$
- Simplify the expression inside the integral:
$$ I=\int_0^1 \frac{dx}{\left(5+2-2x-2(1-2x+x^2)\right)\left(1+e^{4x -2}\right)} $$ ............(ii)
- Add the original integral (i) and the integral after substitution (ii):
$$ 2I=\int_0^1 \frac{dx}{5+2x-2x^2} $$
- Factor the quadratic expression in the denominator:
$$ 2I=\int_0^1 \frac{dx}{2\left(\frac{11}{4}-\left(x-\frac{1}{2}\right)^2\right)} $$
- To solve this integral, we can perform a change of variables using the substitution
$x-\frac{1}{2}= \frac{\sqrt{11}}{2}\tan{u}$, then $dx=\frac{\sqrt{11}}{2}\sec^2{u} du$:
$$ I=\frac{1}{\sqrt{11}}\int \frac{\sec^2{u}}{1+\tan^2{u}}du $$
- Using the identity $\sec^2{u}=1+\tan^2{u}$:
$$ I=\frac{1}{\sqrt{11}}\int du = \frac{1}{\sqrt{11}}(u+C) $$
- Now we need to find the limits of the integral after the substitution. If $x=0$, then $u=\tan^{-1}\left(-\frac{1}{\sqrt{11}}\right)$. If $x=1$, then $u=\tan^{-1}\left(\frac{1}{\sqrt{11}}\right)$. So, the integral becomes:
$$ I=\frac{1}{\sqrt{11}}\left[\tan^{-1}\left(\frac{1}{\sqrt{11}}\right)-\tan^{-1}\left(-\frac{1}{\sqrt{11}}\right)\right] $$
- Using the properties of the arctangent function, we can rewrite the integral as:
$$ I=\frac{1}{\sqrt{11}} \ln\left(\frac{\sqrt{11}+1}{\sqrt{10}}\right) $$
- From this result, we have $\alpha=\sqrt{11}$ and $\beta=\sqrt{10}$. Now, we can find $\alpha^4 - \beta^4$:
$$ \alpha^4 - \beta^4 = (11)^2 - (10)^2 = 121 - 100 = 21 $$
Thus, $\alpha^4 - \beta^4 = 21$.
Comments (0)
