JEE MAIN - Mathematics (2023 - 13th April Morning Shift - No. 8)
$$\int_\limits{0}^{\infty} \frac{6}{e^{3 x}+6 e^{2 x}+11 e^{x}+6} d x=$$
$$\log _{e}\left(\frac{256}{81}\right)$$
$$\log _{e}\left(\frac{64}{27}\right)$$
$$\log _{e}\left(\frac{32}{27}\right)$$
$$\log _{e}\left(\frac{512}{81}\right)$$
Explanation
$$
\begin{aligned}
& \mathrm{l}=\int_0^{\infty} \frac{6}{\left(\mathrm{e}^{\mathrm{x}}+1\right)\left(\mathrm{e}^{\mathrm{x}}+2\right)\left(\mathrm{e}^{\mathrm{x}}+3\right)} \mathrm{dx} \\\\
& =6 \int_0^{\infty}\left(\frac{\frac{1}{2}}{\mathrm{e}^{\mathrm{x}}+1}+\frac{-1}{\mathrm{e}^{\mathrm{x}}+2}+\frac{\frac{1}{2}}{\mathrm{e}^{\mathrm{x}}+3}\right) \mathrm{dx} \\\\
& =3 \int_0^{\infty} \frac{\mathrm{e}^{-\mathrm{x}}}{1+\mathrm{e}^{-\mathrm{x}}} \mathrm{dx}-6 \int_0^{\infty} \frac{\mathrm{e}^{-\mathrm{x}} \mathrm{dx}}{1+2 \mathrm{e}^{-\mathrm{x}}}+3 \int_0^{\infty} \frac{\mathrm{e}^{-\mathrm{x}}}{1+3 \mathrm{e}^{-\mathrm{x}}} \mathrm{dx} \\\\
& =3\left[-\ln \left(1+\mathrm{e}^{-\mathrm{x}}\right)\right]_0^{\infty}+6 \frac{1}{2}\left[\ln \left(1+2 \mathrm{e}^{-\mathrm{x}}\right)\right]_0^{\infty} -\frac{3}{3}\left[\ln \left(1+3 \mathrm{e}^{-\mathrm{x}}\right)\right]_0^{\infty} \\\\
& =3 \ln 2-3 \ln 3+\ln 4 \\\\
& =3 \ln \frac{2}{3}+\ln 4 \\\\
& =\ln \frac{32}{27}
\end{aligned}
$$
Comments (0)
