JEE MAIN - Mathematics (2023 - 13th April Morning Shift - No. 7)

The set of all $$a \in \mathbb{R}$$ for which the equation $$x|x-1|+|x+2|+a=0$$ has exactly one real root, is :
$$(-\infty, \infty)$$
$$(-6, \infty)$$
$$(-\infty,-3)$$
$$(-6,-3)$$

Explanation

$$ x|x-1|+|x+2|+a=0 $$

Case I : If $x<-2$ then

$$ -x^2+x-x-2+a=0 $$

$$ a=x^2+2 $$

$y=x^2+2$ is decreasing $\forall x \in(-\infty,-2)$

Case II : If $-2 \leq x<1$ then

$$ \begin{aligned} & -x^2+x+x+2+a=0 \\\\ & a=x^2-2 x-2 \end{aligned} $$

$y=x^2-2 x-2$ is decreasing $\forall x \in[-2,1)$.

Case III: If $x \geq 1$ then

$$ \begin{aligned} & x^2-x+x+2+a=0 \\\\ & a=-\left(x^2+2\right) \end{aligned} $$

$y=-\left(x^2+2\right)$ is decreasing $\forall x \in[1, \infty)$

$\therefore$ Exactly one real root $\forall x \in R$

Comments (0)

Advertisement