JEE MAIN - Mathematics (2023 - 13th April Morning Shift - No. 19)
If $$S=\left\{x \in \mathbb{R}: \sin ^{-1}\left(\frac{x+1}{\sqrt{x^{2}+2 x+2}}\right)-\sin ^{-1}\left(\frac{x}{\sqrt{x^{2}+1}}\right)=\frac{\pi}{4}\right\}$$, then $$\sum_\limits{x \in s}\left(\sin \left(\left(x^{2}+x+5\right) \frac{\pi}{2}\right)-\cos \left(\left(x^{2}+x+5\right) \pi\right)\right)$$ is equal to ____________.
Answer
4
Explanation
Given equation is
$$ \sin^{-1}\left(\frac{x+1}{\sqrt{x^{2}+2 x+2}}\right)-\sin^{-1}\left(\frac{x}{\sqrt{x^{2}+1}}\right)=\frac{\pi}{4}. $$
Let's denote:
$$A = \sin^{-1}\left(\frac{x+1}{\sqrt{x^{2}+2 x+2}}\right),$$
$$B = \sin^{-1}\left(\frac{x}{\sqrt{x^{2}+1}}\right).$$
So, we have the equation $A - B = \frac{\pi}{4}$.
We can also write this as $A = B + \frac{\pi}{4}$.
This gives us
$$\sin(A) = \sin\left(B + \frac{\pi}{4}\right).$$
We can use the identity $\sin(a + b) = \sin a \cos b + \cos a \sin b$ and rewrite this equation as:
$$\frac{x+1}{\sqrt{(x+1)^2+1}} = \frac{x}{\sqrt{x^2+1}} \cos\left(\frac{\pi}{4}\right) + \sqrt{1-\left(\frac{x}{\sqrt{x^2+1}}\right)^2} \sin\left(\frac{\pi}{4}\right).$$
After simplifying, we get:
$$\frac{x+1}{\sqrt{x^2 + 2x + 2}} = \frac{1}{\sqrt{2}}\left(\frac{x}{\sqrt{x^2 + 1}} + \sqrt{1 - \frac{x^2}{x^2 + 1}}\right).$$
Let's square both sides to remove the square roots:
On the left side, squaring gives:
$$\left(\frac{x+1}{\sqrt{x^2 + 2x + 2}}\right)^2 = \frac{(x+1)^2}{x^2 + 2x + 2}.$$
On the right side, squaring gives:
$$\left(\frac{1}{\sqrt{2}}\left(\frac{x}{\sqrt{x^2 + 1}} + \sqrt{1 - \frac{x^2}{x^2 + 1}}\right)\right)^2 = \frac{1}{2}\left(\frac{x^2}{x^2+1} + 2\frac{x}{\sqrt{x^2+1}}\sqrt{1-\frac{x^2}{x^2+1}} + 1 - \frac{x^2}{x^2+1}\right).$$
$$ \therefore $$ $$\frac{(x+1)^2}{x^2 + 2x + 2}$$ = $$\frac{1}{2}\left(\frac{x^2}{x^2+1} + 2\frac{x}{\sqrt{x^2+1}}\sqrt{1-\frac{x^2}{x^2+1}} + 1 - \frac{x^2}{x^2+1}\right)$$
$$ \Rightarrow $$ $$\frac{(x+1)^2}{x^2 + 2x + 2}$$ = $${1 \over 2}\left( {2 \times {x \over {\sqrt {{x^2} + 1} }}\sqrt {{{{x^2} + 1 - {x^2}} \over {{x^2} + 1}}} + 1} \right)$$
$$ \Rightarrow $$ $$\frac{(x+1)^2}{x^2 + 2x + 2}$$ = $${1 \over 2}\left( {2 \times {x \over {\sqrt {{x^2} + 1} }}{1 \over {\sqrt {{x^2} + 1} }} + 1} \right)$$
$$ \Rightarrow $$ $$\frac{(x+1)^2}{x^2 + 2x + 2}$$ = $${1 \over 2}\left( {2 \times {x \over {{x^2} + 1}} + 1} \right)$$
$$ \Rightarrow $$ $$\frac{(x+1)^2}{x^2 + 2x + 2}$$ = $${1 \over 2}\left( {{{2x + {x^2} + 1} \over {{x^2} + 1}}} \right)$$
$$ \Rightarrow $$ $$\frac{(x+1)^2}{x^2 + 2x + 2}$$ = $${1 \over 2}\left( {{{{{\left( {x + 1} \right)}^2}} \over {{x^2} + 1}}} \right)$$
$$ \begin{aligned} & \Rightarrow \frac{x+1}{\sqrt{x^2+2x+2}}=\frac{x+1}{\sqrt{2} \sqrt{x^2+1}} \\\\ & \Rightarrow x=-1 \text { OR } \sqrt{x^2+2x+2}=\sqrt{2} \cdot \sqrt{x^2+1} \\\\ & \Rightarrow x=0, x=2 \text { (Rejected) } \\\\ & S=\{0,-1\} \end{aligned} $$
$$ \begin{aligned} & \sum_{x \in R}\left(\sin \left(\left(x^2+x+5\right) \frac{\pi}{2}\right)-\cos \left(\left(x^2+x+5\right) \pi\right)\right) \\\\ & =\left[\sin \left(\frac{5 \pi}{2}\right)-\cos (5 \pi)\right]+\left[\sin \left(\frac{5 \pi}{2}\right)-\cos (5 \pi)\right] \\\\ & = (1 -(-1)) + (1 -(-1))\\\\ & = 2 + 2 \\\\ & = 4 \end{aligned} $$
$$ \sin^{-1}\left(\frac{x+1}{\sqrt{x^{2}+2 x+2}}\right)-\sin^{-1}\left(\frac{x}{\sqrt{x^{2}+1}}\right)=\frac{\pi}{4}. $$
Let's denote:
$$A = \sin^{-1}\left(\frac{x+1}{\sqrt{x^{2}+2 x+2}}\right),$$
$$B = \sin^{-1}\left(\frac{x}{\sqrt{x^{2}+1}}\right).$$
So, we have the equation $A - B = \frac{\pi}{4}$.
We can also write this as $A = B + \frac{\pi}{4}$.
This gives us
$$\sin(A) = \sin\left(B + \frac{\pi}{4}\right).$$
We can use the identity $\sin(a + b) = \sin a \cos b + \cos a \sin b$ and rewrite this equation as:
$$\frac{x+1}{\sqrt{(x+1)^2+1}} = \frac{x}{\sqrt{x^2+1}} \cos\left(\frac{\pi}{4}\right) + \sqrt{1-\left(\frac{x}{\sqrt{x^2+1}}\right)^2} \sin\left(\frac{\pi}{4}\right).$$
After simplifying, we get:
$$\frac{x+1}{\sqrt{x^2 + 2x + 2}} = \frac{1}{\sqrt{2}}\left(\frac{x}{\sqrt{x^2 + 1}} + \sqrt{1 - \frac{x^2}{x^2 + 1}}\right).$$
Let's square both sides to remove the square roots:
On the left side, squaring gives:
$$\left(\frac{x+1}{\sqrt{x^2 + 2x + 2}}\right)^2 = \frac{(x+1)^2}{x^2 + 2x + 2}.$$
On the right side, squaring gives:
$$\left(\frac{1}{\sqrt{2}}\left(\frac{x}{\sqrt{x^2 + 1}} + \sqrt{1 - \frac{x^2}{x^2 + 1}}\right)\right)^2 = \frac{1}{2}\left(\frac{x^2}{x^2+1} + 2\frac{x}{\sqrt{x^2+1}}\sqrt{1-\frac{x^2}{x^2+1}} + 1 - \frac{x^2}{x^2+1}\right).$$
$$ \therefore $$ $$\frac{(x+1)^2}{x^2 + 2x + 2}$$ = $$\frac{1}{2}\left(\frac{x^2}{x^2+1} + 2\frac{x}{\sqrt{x^2+1}}\sqrt{1-\frac{x^2}{x^2+1}} + 1 - \frac{x^2}{x^2+1}\right)$$
$$ \Rightarrow $$ $$\frac{(x+1)^2}{x^2 + 2x + 2}$$ = $${1 \over 2}\left( {2 \times {x \over {\sqrt {{x^2} + 1} }}\sqrt {{{{x^2} + 1 - {x^2}} \over {{x^2} + 1}}} + 1} \right)$$
$$ \Rightarrow $$ $$\frac{(x+1)^2}{x^2 + 2x + 2}$$ = $${1 \over 2}\left( {2 \times {x \over {\sqrt {{x^2} + 1} }}{1 \over {\sqrt {{x^2} + 1} }} + 1} \right)$$
$$ \Rightarrow $$ $$\frac{(x+1)^2}{x^2 + 2x + 2}$$ = $${1 \over 2}\left( {2 \times {x \over {{x^2} + 1}} + 1} \right)$$
$$ \Rightarrow $$ $$\frac{(x+1)^2}{x^2 + 2x + 2}$$ = $${1 \over 2}\left( {{{2x + {x^2} + 1} \over {{x^2} + 1}}} \right)$$
$$ \Rightarrow $$ $$\frac{(x+1)^2}{x^2 + 2x + 2}$$ = $${1 \over 2}\left( {{{{{\left( {x + 1} \right)}^2}} \over {{x^2} + 1}}} \right)$$
$$ \begin{aligned} & \Rightarrow \frac{x+1}{\sqrt{x^2+2x+2}}=\frac{x+1}{\sqrt{2} \sqrt{x^2+1}} \\\\ & \Rightarrow x=-1 \text { OR } \sqrt{x^2+2x+2}=\sqrt{2} \cdot \sqrt{x^2+1} \\\\ & \Rightarrow x=0, x=2 \text { (Rejected) } \\\\ & S=\{0,-1\} \end{aligned} $$
$$ \begin{aligned} & \sum_{x \in R}\left(\sin \left(\left(x^2+x+5\right) \frac{\pi}{2}\right)-\cos \left(\left(x^2+x+5\right) \pi\right)\right) \\\\ & =\left[\sin \left(\frac{5 \pi}{2}\right)-\cos (5 \pi)\right]+\left[\sin \left(\frac{5 \pi}{2}\right)-\cos (5 \pi)\right] \\\\ & = (1 -(-1)) + (1 -(-1))\\\\ & = 2 + 2 \\\\ & = 4 \end{aligned} $$
Comments (0)
