JEE MAIN - Mathematics (2023 - 13th April Morning Shift - No. 13)
For the differentiable function $$f: \mathbb{R}-\{0\} \rightarrow \mathbb{R}$$, let $$3 f(x)+2 f\left(\frac{1}{x}\right)=\frac{1}{x}-10$$, then $$\left|f(3)+f^{\prime}\left(\frac{1}{4}\right)\right|$$ is equal to
13
$$\frac{29}{5}$$
$$\frac{33}{5}$$
7
Explanation
Given the equation: $$3f(x) + 2f\left(\frac{1}{x}\right) = \frac{1}{x} - 10$$
Replace $$x$$ with $$\frac{1}{x}$$ in the original equation:
$$3f\left(\frac{1}{x}\right) + 2f(x) = x - 10$$Now, we have two equations:
$$3f(x) + 2f\left(\frac{1}{x}\right) = \frac{1}{x} - 10$$
$$3f\left(\frac{1}{x}\right) + 2f(x) = x - 10$$
- By adding the two equations, we can find $$f(x)$$:
$$5f(x) = \frac{3}{x} - 2x - 10$$
- Now, let's differentiate both sides with respect to $$x$$:
$$5f'(x) = -\frac{3}{x^2} - 2$$
- Now, we can find the values for $$f(3)$$ and $$f'\left(\frac{1}{4}\right)$$:
$$f(3) = \frac{1}{5}(1 - 6 - 10) = -3$$
$$f'\left(\frac{1}{4}\right) = \frac{1}{5}(-48 - 2) = -10$$
- Finally, calculate the expression we are interested in :
$$\left|f(3) + f'\left(\frac{1}{4}\right)\right| = \left|-3 - 10\right| = 13$$
Comments (0)
