JEE MAIN - Mathematics (2023 - 13th April Evening Shift - No. 8)

Let $$\alpha, \beta$$ be the roots of the equation $$x^{2}-\sqrt{2} x+2=0$$. Then $$\alpha^{14}+\beta^{14}$$ is equal to
$$-64$$
$$-64 \sqrt{2}$$
$$-128 \sqrt{2}$$
$$-128$$

Explanation

  1. Find the roots of the quadratic equation:

    The quadratic formula is $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$. For the quadratic equation $$x^2 - \sqrt{2}x + 2 = 0$$, we have $$a = 1, b = -\sqrt{2}, c = 2$$. Plugging these into the quadratic formula gives:

    $$x = \frac{\sqrt{2} \pm \sqrt{(-\sqrt{2})^2 - 4(1)(2)}}{2(1)} = \frac{\sqrt{2} \pm \sqrt{2 - 8}}{2} = \frac{\sqrt{2} \pm \sqrt{6}i}{2}.$$

    So, we have two roots, $\alpha$ and $\beta$, which are:

    $$\alpha = \frac{\sqrt{2} + \sqrt{6}i}{2},$$

    $$\beta = \frac{\sqrt{2} - \sqrt{6}i}{2}.$$

  2. Express the roots in exponential form:

    We can express complex numbers in the form $$re^{i\theta}$$. For $\alpha$ and $\beta$, we find the magnitude $$r = \sqrt{2}$$ and the arguments $$\theta = \frac{\pi}{3}, -\frac{\pi}{3}$$ respectively. So, we have:

    $$\alpha = \sqrt{2}e^{i\frac{\pi}{3}},$$

    $$\beta = \sqrt{2}e^{-i\frac{\pi}{3}}.$$

  3. Calculate the 14th power of the roots:

    To find $$\alpha^{14}$$ and $$\beta^{14}$$, we use the property of exponents which says that $$(a^m)^n = a^{mn}$$. So, we have:

    $$\alpha^{14} = (\sqrt{2}e^{i\frac{\pi}{3}})^{14} = 2^7e^{i\frac{14\pi}{3}} = 128e^{i\frac{2\pi}{3}},$$

    $$\beta^{14} = (\sqrt{2}e^{-i\frac{\pi}{3}})^{14} = 2^7e^{-i\frac{14\pi}{3}} = 128e^{-i\frac{2\pi}{3}}.$$

  4. Add the 14th powers of the roots:

    We want to find the real part of $$\alpha^{14} + \beta^{14}$$. To do this, we use the property that $$e^{ix} = \cos(x) + i\sin(x)$$. We have:

    $$\alpha^{14} + \beta^{14} = 128e^{i\frac{2\pi}{3}} + 128e^{-i\frac{2\pi}{3}} = 128(2)\cos\left(\frac{2\pi}{3}\right) = -128.$$

Comments (0)

Advertisement