JEE MAIN - Mathematics (2023 - 13th April Evening Shift - No. 6)
Explanation
Given two lines:
$\frac{x - x_1}{a_1} = \frac{y - y_1}{b_1} = \frac{z - z_1}{c_1}$
and
$\frac{x - x_2}{a_2} = \frac{y - y_2}{b_2} = \frac{z - z_2}{c_2}$
These lines are coplanar if the determinant of the matrix
$$ \begin{vmatrix} x_2-x_1 & y_2-y_1 & z_2-z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix} $$ = 0
Now let's apply this condition to the given problem. The given line is :
$\frac{x + 3}{-3} = \frac{y - 1}{1} = \frac{z - 5}{5}$
So, the coordinates of any point on this line are $(-3, 1, 5)$ and the direction ratios are $(-3, 1, 5)$.
Now, let's calculate the determinants for each option and check which one equals zero.
For Option A :
$\frac{x + 1}{-1} = \frac{y - 2}{2} = \frac{z - 5}{4}$
The coordinates of any point on this line are $(-1, 2, 5)$ and the direction ratios are $(-1, 2, 4)$.
The determinant is :
$$ \begin{vmatrix} -1 - (-3) & 2 - 1 & 5 - 5 \\ -3 & 1 & 5 \\ -1 & 2 & 4 \end{vmatrix} = \begin{vmatrix} 2 & 1 & 0 \\ -3 & 1 & 5 \\ -1 & 2 & 4 \end{vmatrix} $$
Applying the formula :
= $2(1 \times 4 - 5\times2) - 1((-3\times4) - (5\times-1)) + 0((-3\times2) - (1\times-1))$
= $2(4 - 10) - 1(-12 - (-5)) + 0(-6 - (-1))$
= $2(-6) - 1(-7) + 0(-5)$
= $-12 + 7 + 0$
= $-5$
The determinant for Option A is not equal to zero, so this line is not coplanar with the given line.
For Option B, we have :
$\frac{x + 1}{-1} = \frac{y - 2}{2} = \frac{z - 5}{5}$
The coordinates of any point on this line are $(-1, 2, 5)$ and the direction ratios are $(-1, 2, 5)$.
$$ \begin{vmatrix} -1 - (-3) & 2 - 1 & 5 - 5 \\ -3 & 1 & 5 \\ -1 & 2 & 5 \end{vmatrix} = \begin{vmatrix} 2 & 1 & 0 \\ -3 & 1 & 5 \\ -1 & 2 & 5 \end{vmatrix} $$
Applying the formula, we get :
= $2(1*5 - 5*2) - 1((-3*5) - (5*-1)) + 0((-3*2) - (1*-1))$
= $2(5 - 10) - 1(-15 - (-5)) + 0(-6 - (-1))$
= $2(-5) - 1(-10) + 0(-5)$
= $-10 + 10 + 0$
= $0$
So, the determinant for Option B equals zero, which confirms that the line in Option B is coplanar with the given line.For Option C :
$\frac{x - 1}{-1} = \frac{y - 2}{2} = \frac{z - 5}{5}$
The coordinates of any point on this line are $(1, 2, 5)$ and the direction ratios are $(-1, 2, 5)$.
The determinant is:
$$ \begin{vmatrix} 1 - (-3) & 2 - 1 & 5 - 5 \\ -3 & 1 & 5 \\ -1 & 2 & 5 \end{vmatrix} = \begin{vmatrix} 4 & 1 & 0 \\ -3 & 1 & 5 \\ -1 & 2 & 5 \end{vmatrix} $$
Applying the formula :
= $4(1*5 - 5*2) - 1((-3*5) - (5*-1)) + 0((-3*2) - (1*-1))$
= $4(5 - 10) - 1(-15 - (-5)) + 0(-6 - (-1))$
= $4(-5) - 1(-10) + 0(-5)$
= $-20 + 10 + 0$
= $-10$
The determinant for Option C is not equal to zero, so this line is not coplanar with the given line.
For Option D :
$\frac{x + 1}{1} = \frac{y - 2}{2} = \frac{z - 5}{5}$
The coordinates of any point on this line are $(-1, 2, 5)$ and the direction ratios are $(1, 2, 5)$.
The determinant is :
$$ \begin{vmatrix} -1 - (-3) & 2 - 1 & 5 - 5 \\ -3 & 1 & 5 \\ 1 & 2 & 5 \end{vmatrix} = \begin{vmatrix} 2 & 1 & 0 \\ -3 & 1 & 5 \\ 1 & 2 & 5 \end{vmatrix} $$
Applying the formula :
= $2(1*5 - 5*2) - 1((-3*5) - (5*1)) + 0((-3*2) - (1*1))$
= $2(5 - 10) - 1(-15 - 5) + 0(-6 - 1)$
= $2(-5) - 1(-20) + 0(-7)$
= $-10 + 20 + 0$
= $10$
So the determinant for Option D is not equal to zero, which means the line in Option D is not coplanar with the given line.
Comments (0)
