JEE MAIN - Mathematics (2023 - 13th April Evening Shift - No. 21)
$$\frac{d y}{d x}+\frac{4 x}{\left(x^{2}-1\right)} y=\frac{x+2}{\left(x^{2}-1\right)^{\frac{5}{2}}}, x > 1$$ such that
$$y(2)=\frac{2}{9} \log _{e}(2+\sqrt{3}) \text { and } y(\sqrt{2})=\alpha \log _{e}(\sqrt{\alpha}+\beta)+\beta-\sqrt{\gamma}, \alpha, \beta, \gamma \in \mathbb{N} \text {, then } \alpha \beta \gamma \text { is equal to }$$ :
Explanation
We can solve the given differential equation using an integrating factor.
The integrating factor is given by :
$$
\mu(x) = e^{\int \frac{4x}{x^2 - 1} dx} = e^{2\ln(x^2 - 1)} = (x^2 - 1)^2
$$
Multiplying both sides of the differential equation by $\mu(x)$, we get :
$$(x^2-1)^2 \frac{d y}{d x} + 4x y = \frac{x+2}{\left(x^{2}-1\right)^{\frac{1}{2}}}$$
We can rewrite the left-hand side using the product rule:
$$\frac{d}{dx} \left((x^2-1)^2 y\right) = \frac{x+2}{\left(x^{2}-1\right)^{\frac{1}{2}}}$$
Integrating both sides with respect to $x$, we get:
$$(x^2-1)^2 y = \int \frac{x+2}{\left(x^{2}-1\right)^{\frac{1}{2}}} dx = \sqrt{x^2-1}+2 \ln\left|x+\sqrt{x^2-1}\right|+C$$
where $C$ is the constant of integration. Using the initial condition $y(2) = \frac{2}{9} \log_e(2+\sqrt{3})$, we can solve for $C$:
At $x=2$,$9 \cdot \frac{2}{9} \ln (2+\sqrt{3})=2 \ln (2+\sqrt{3})+\sqrt{3}+C$
$C=-\sqrt{3}$
At $x=\sqrt{2}$
$y(\sqrt{2})=2 \ln (1+\sqrt{2})+1-\sqrt{3}$
$\beta=1, \alpha=2, \gamma=3$
$$ \Rightarrow \alpha \beta \gamma=6 $$
Comments (0)
