JEE MAIN - Mathematics (2023 - 13th April Evening Shift - No. 13)

The range of $$f(x)=4 \sin ^{-1}\left(\frac{x^{2}}{x^{2}+1}\right)$$ is
$$[0,2 \pi]$$
$$[0,2 \pi)$$
$$[0, \pi)$$
$$[0, \pi]$$

Explanation

$$ \begin{aligned} & \frac{x^2}{1+x^2}=1-\frac{1}{1+x^2}<1 \\\\ \therefore & 0 \leq \frac{x^2}{1+x^2}<1 \\\\ \Rightarrow & 0 \leq \sin ^{-1}\left(\frac{x^2}{1+x^2}\right)<\frac{\pi}{2} \\\\ \Rightarrow & 0 \leq 4 \sin ^{-1}\left(\frac{x^2}{1+x^2}\right)<2 \pi \end{aligned} $$

Comments (0)

Advertisement