JEE MAIN - Mathematics (2023 - 13th April Evening Shift - No. 12)
Explanation
We're given the expression:
$$\frac{e^{-\pi/4} + \int_0^{\pi / 4} e^{-x} \tan ^{50} x dx}{\int_0^{\pi / 4} e^{-x}(\tan x)^{49} dx + \int_0^{\pi / 4} e^{-x}(\tan x)^{51} dx}$$
Notice that the integrals in the numerator and denominator have the same form. They both involve an integral of $e^{-x} \tan^n x$ from 0 to $\pi / 4$, where $n$ is an integer. Let's denote this integral as $I(n)$:
$$I(n) = \int_0^{\pi / 4} e^{-x} \tan^n x dx$$
We can then rewrite the original expression in terms of $I(n)$:
$$\frac{e^{-\pi/4} + I(50)}{I(49) + I(51)}$$
Now, we'll apply the method of integration by parts, which states that for two functions $u(x)$ and $v(x)$:
$$\int u dv = uv - \int v du$$
We'll choose:
$$u = \tan^n x, \quad dv = e^{-x} dx$$
Then we get:
$$du = n \tan^{n-1} x \sec^2 x dx, \quad v = -e^{-x}$$
Applying integration by parts, we have:
$$I(n) = -e^{-x} \tan^n x \Bigg|_0^{\pi / 4} + n \int_0^{\pi / 4} e^{-x} \tan^{n-1} x \sec^2 x dx$$
Since $\tan(\pi / 4) = 1$, the first term evaluates to:
$$-e^{-\pi / 4}$$
The second term becomes:
$$n \int_0^{\pi / 4} e^{-x} \tan^{n-1} x (1 + \tan^2 x) dx = n \int_0^{\pi / 4} e^{-x} \tan^{n-1} x dx + n \int_0^{\pi / 4} e^{-x} \tan^{n+1} x dx$$
This is equal to:
$$n(I(n-1) + I(n+1))$$
So we have:
$$I(n) = -e^{-\pi / 4} + n(I(n-1) + I(n+1))$$
Now we can substitute $n = 50$ into this equation:
$$I(50) = -e^{-\pi / 4} + 50(I(49) + I(51))$$
So the original expression becomes:
$$\frac{e^{-\pi/4} + I(50)}{I(49) + I(51)} = \frac{e^{-\pi/4} - e^{-\pi / 4} + 50(I(49) + I(51))}{I(49) + I(51)} = 50$$
Comments (0)
