JEE MAIN - Mathematics (2023 - 13th April Evening Shift - No. 1)

Let a$$_1$$, a$$_2$$, a$$_3$$, .... be a G.P. of increasing positive numbers. Let the sum of its 6th and 8th terms be 2 and the product of its 3rd and 5th terms be $$\frac{1}{9}$$. Then $$6(a_2+a_4)(a_4+a_6)$$ is equal to
2$$\sqrt2$$
2
3$$\sqrt3$$
3

Explanation

Given the conditions :

  1. $a_6 + a_8 = 2 \Rightarrow a r^5 + a r^7 = 2$
  2. $a_3 \cdot a_5 = \frac{1}{9} \Rightarrow a^2 \cdot r^2 \cdot r^4 = \frac{1}{9} \Rightarrow a r^3 = \frac{1}{3}$

From this, we can form the equation $\frac{r^2}{3} + \frac{r^4}{3} = 2$, which simplifies to $r^4 + r^2 = 6$.

This can be factored to give $\left(r^2 - 2\right)\left(r^2 + 3\right) = 0$, yielding $r^2 = 2$ (since $r^2$ cannot be $-3$ for real $r$).

So, we have $r = \sqrt{2}$.

Substituting $r = \sqrt{2}$ into the equation $a r = \frac{1}{6}$, we get $a = \frac{1}{6\sqrt{2}}$.

Now, we find the value of $6(a_2+a_4)(a_4+a_6)$:

$6(a_2+a_4)(a_4+a_6) = 6\left(a r + a r^3\right)\left(a r^3 + a r^5\right)$

$= 6\left(\frac{1}{6\sqrt{2}} + \frac{1}{3\sqrt{2}}\right)\left(\frac{1}{3\sqrt{2}} + \frac{2}{3\sqrt{2}}\right)$

$= 6 \cdot \frac{1}{2} \cdot 1 = 3$.

Comments (0)

Advertisement