JEE MAIN - Mathematics (2023 - 11th April Morning Shift - No. 24)
The number of integral terms in the expansion of $$\left(3^{\frac{1}{2}}+5^{\frac{1}{4}}\right)^{680}$$ is equal to ___________.
Answer
171
Explanation
$$
\begin{aligned}
& \text { General term of the expansion }\left(3^{\frac{1}{2}}+5^{\frac{1}{4}}\right)^{680} \\\\
& \qquad={ }^{680} C_r\left(3^{1 / 2}\right)^{680-r}\left(5^{1 / 4}\right)^r={ }^{680} C_r \times 3^{\frac{680-r}{2}} \times 5^{\frac{r}{4}}
\end{aligned}
$$
The term will be integral if $r$ is a multiple of 4 .
$$ \begin{gathered} \therefore r=0,4,8,12, \ldots, 680(\text { which is an } \mathrm{AP}) \\\\ 680=0+(n-1) 4 \\\\ n=\frac{680}{4}+1=171 \end{gathered} $$
The term will be integral if $r$ is a multiple of 4 .
$$ \begin{gathered} \therefore r=0,4,8,12, \ldots, 680(\text { which is an } \mathrm{AP}) \\\\ 680=0+(n-1) 4 \\\\ n=\frac{680}{4}+1=171 \end{gathered} $$
Comments (0)
