JEE MAIN - Mathematics (2023 - 11th April Morning Shift - No. 2)
Let $$S=\left\{M=\left[a_{i j}\right], a_{i j} \in\{0,1,2\}, 1 \leq i, j \leq 2\right\}$$ be a sample space and $$A=\{M \in S: M$$ is invertible $$\}$$ be an event. Then $$P(A)$$ is equal to :
$$\frac{47}{81}$$
$$\frac{49}{81}$$
$$\frac{50}{81}$$
$$\frac{16}{27}$$
Explanation
We have, $S=\left\{M=\left[a_{i j}\right], a_{i j} \in\{0,1,2\}, 1 \leq i, j \leq 2\right\}$
Let $M=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, where $a, b, c, d \in\{0,1,2\}$
$$ n(s)=3^4=81 $$
If $A$ is invertible, then $|A| \neq 0$
Now, if $|A|=0$, then $|M|=0$
$\therefore a d-b c=0$ or $a d=b c$
Case I : When $a d=b c=0$, then
There are five ways when $a d=0$ i.e.,
$(a, d)=(0,0),(0,1),(0,2),(1,0),(2,0)$
Similarly, there are again five ways, when $b c=0$
$\therefore$ There are total $5 \times 5=25$ ways, when $a d=b c=0$
Case II : When $a d=b c=1$
There is only one way, when $a d=b c=1$
$$ \text { i.e. } \quad a=b=c=d=1 $$
Case III : When $a d=b c=2$
There are two ways, when $a d=2$, i.e.
$$ (a, d)=(1,2) \text { or }(2,1) $$
Similarly, there are two ways
when $b c=2$ i.e., $(b, c)=(1,2)$ or $(2,1)$
Case IV : When $a d-b c=4$
There is only way, when $a d=b c=4$
$$ \text { i.e., } a=b=c=d=2 $$
$\therefore$ Total number of ways, when
$$ \begin{aligned} & (\bar{A})=\frac{31}{81}|A|=0 \text { is } 25+1+4+1=31 \\\\ & \text { Hence, } P(A)=1-P(\bar{A})=1-\frac{31}{81}=\frac{50}{81} \end{aligned} $$
Let $M=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, where $a, b, c, d \in\{0,1,2\}$
$$ n(s)=3^4=81 $$
If $A$ is invertible, then $|A| \neq 0$
Now, if $|A|=0$, then $|M|=0$
$\therefore a d-b c=0$ or $a d=b c$
Case I : When $a d=b c=0$, then
There are five ways when $a d=0$ i.e.,
$(a, d)=(0,0),(0,1),(0,2),(1,0),(2,0)$
Similarly, there are again five ways, when $b c=0$
$\therefore$ There are total $5 \times 5=25$ ways, when $a d=b c=0$
Case II : When $a d=b c=1$
There is only one way, when $a d=b c=1$
$$ \text { i.e. } \quad a=b=c=d=1 $$
Case III : When $a d=b c=2$
There are two ways, when $a d=2$, i.e.
$$ (a, d)=(1,2) \text { or }(2,1) $$
Similarly, there are two ways
when $b c=2$ i.e., $(b, c)=(1,2)$ or $(2,1)$
Case IV : When $a d-b c=4$
There is only way, when $a d=b c=4$
$$ \text { i.e., } a=b=c=d=2 $$
$\therefore$ Total number of ways, when
$$ \begin{aligned} & (\bar{A})=\frac{31}{81}|A|=0 \text { is } 25+1+4+1=31 \\\\ & \text { Hence, } P(A)=1-P(\bar{A})=1-\frac{31}{81}=\frac{50}{81} \end{aligned} $$
Comments (0)
