JEE MAIN - Mathematics (2023 - 10th April Morning Shift - No. 21)
The coefficient of $$x^7$$ in $${(1 - x + 2{x^3})^{10}}$$ is ___________.
Answer
960
Explanation
Given expression is $\left(1-x+2 x^3\right)^{10}$
So, general term is $\frac{10 !}{r_{1} ! r_{2} ! r_{3} !}(1)^{r_1}(-1)^{r_2} \cdot(2)^{r_3} \cdot(x)^{r_2+r_3}$
Where, $r_1+r_2+r_3=10$ and $r_2+3 r_3=7$
Now, for possibility,
$\begin{array}{ccc}r_1 & r_2 & r_3 \\ 3 & 7 & 0 \\ 7 & 1 & 2 \\ 5 & 4 & 1\end{array}$
Thus, required co-efficient
$$ \begin{aligned} & =\frac{10 !}{3 ! 7 !}(-1)^7+\frac{10 !}{5 ! 4 !}(-1)^4(2)+\frac{10 !}{7 ! 2 !}(-1)^1(2)^2 \\\\ & =-120+2520-1440 \\\\ & =2520-1560=960 \end{aligned} $$
So, general term is $\frac{10 !}{r_{1} ! r_{2} ! r_{3} !}(1)^{r_1}(-1)^{r_2} \cdot(2)^{r_3} \cdot(x)^{r_2+r_3}$
Where, $r_1+r_2+r_3=10$ and $r_2+3 r_3=7$
Now, for possibility,
$\begin{array}{ccc}r_1 & r_2 & r_3 \\ 3 & 7 & 0 \\ 7 & 1 & 2 \\ 5 & 4 & 1\end{array}$
Thus, required co-efficient
$$ \begin{aligned} & =\frac{10 !}{3 ! 7 !}(-1)^7+\frac{10 !}{5 ! 4 !}(-1)^4(2)+\frac{10 !}{7 ! 2 !}(-1)^1(2)^2 \\\\ & =-120+2520-1440 \\\\ & =2520-1560=960 \end{aligned} $$
Comments (0)
