JEE MAIN - Mathematics (2023 - 10th April Morning Shift - No. 19)

If the mean of the frequency distribution

Class : 0-10 10-20 20-30 30-40 40-50
Frequency : 2 3 $$x$$ 5 4

is 28, then its variance is __________.

Answer
151

Explanation

Given mean is 28

$$ \begin{array}{ll} \text { So, } \frac{2 \times 5+3 \times 15+x \times 25+5 \times 35+4 \times 45}{14+x}=28 \\\\ \Rightarrow \frac{10+45+25 x+175+180}{14+x}=28 \\\\ \Rightarrow 310+25 x=392+28 x \\\\ \Rightarrow 3 x=18 \Rightarrow x=6 \end{array} $$

$$ \begin{aligned} & \therefore \text { Variance }=\left(\frac{\sum x_i^2 f_i}{\sum f_i}\right)-(\text { mean })^2 \\\\ & =\left(\frac{2 \times 5^2+3 \times 15^2+6 \times 25^2+5 \times 35^2+4 \times 45^2}{20}\right)-(28)^2 \\\\ & =\left(\frac{50+675+3750+6125+8100}{20}\right)-(28)^2 \\\\ & =\left(\frac{18700}{20}\right)-(28)^2 \\\\ & =935-784=151 \end{aligned} $$

Comments (0)

Advertisement