JEE MAIN - Mathematics (2023 - 10th April Morning Shift - No. 13)
Let $$f$$ be a differentiable function such that $${x^2}f(x) - x = 4\int\limits_0^x {tf(t)dt} $$, $$f(1) = {2 \over 3}$$. Then $$18f(3)$$ is equal to :
160
210
150
180
Explanation
Given that
$$ x^2 f(x)-x=4 \int_0^x t f(t) d t $$
On differentiating both sides with respect to $x$, we get
$$ \begin{array}{rlrl} & 2 x f(x)+x^2 f^{\prime}(x)-1 =4 x f(x) \\\\ &\Rightarrow x^2 f^{\prime}(x)-2 x f(x)-1 =0 \\\\ &\Rightarrow x^2 \frac{d y}{d x}-2 x y =1 ~~~~~~~(Let, y=f(x) ]\\\\ &\frac{d y}{d x}-\frac{2}{x} y =\frac{1}{x^2} \end{array} $$
On comparing above equation with
$\frac{d y}{d x}+P y=Q$, where $P=-\frac{2}{x}, Q=\frac{1}{x^2}$
Now, IF $=e^{\int(-2 / x) d x}=e^{-2 \log x}=1 / x^2$
Solution is $y\left(\frac{1}{x^2}\right)=\int\left(\frac{1}{x^2}\right) \frac{1}{x^2} d x$
$$ \begin{array}{ll} &\Rightarrow \frac{y}{x^2}=\int \frac{1}{x^4} d x \Rightarrow \frac{y}{x^2}=-\frac{1}{3 x^3}+C \\\\ &\Rightarrow y =-\frac{1}{3 x}+C x^2 \end{array} $$
Given, $f(1)=\frac{2}{3}$.
So, $\frac{2}{3}=-\frac{1}{3}+C \Rightarrow C=1$
Thus, $y=f(x)=-\frac{1}{3 x}+x^2$
$$ \therefore 18 f(3)=18\left\{9-\frac{1}{9}\right\}=18 \times \frac{80}{9}=160 $$
$$ x^2 f(x)-x=4 \int_0^x t f(t) d t $$
On differentiating both sides with respect to $x$, we get
$$ \begin{array}{rlrl} & 2 x f(x)+x^2 f^{\prime}(x)-1 =4 x f(x) \\\\ &\Rightarrow x^2 f^{\prime}(x)-2 x f(x)-1 =0 \\\\ &\Rightarrow x^2 \frac{d y}{d x}-2 x y =1 ~~~~~~~(Let, y=f(x) ]\\\\ &\frac{d y}{d x}-\frac{2}{x} y =\frac{1}{x^2} \end{array} $$
On comparing above equation with
$\frac{d y}{d x}+P y=Q$, where $P=-\frac{2}{x}, Q=\frac{1}{x^2}$
Now, IF $=e^{\int(-2 / x) d x}=e^{-2 \log x}=1 / x^2$
Solution is $y\left(\frac{1}{x^2}\right)=\int\left(\frac{1}{x^2}\right) \frac{1}{x^2} d x$
$$ \begin{array}{ll} &\Rightarrow \frac{y}{x^2}=\int \frac{1}{x^4} d x \Rightarrow \frac{y}{x^2}=-\frac{1}{3 x^3}+C \\\\ &\Rightarrow y =-\frac{1}{3 x}+C x^2 \end{array} $$
Given, $f(1)=\frac{2}{3}$.
So, $\frac{2}{3}=-\frac{1}{3}+C \Rightarrow C=1$
Thus, $y=f(x)=-\frac{1}{3 x}+x^2$
$$ \therefore 18 f(3)=18\left\{9-\frac{1}{9}\right\}=18 \times \frac{80}{9}=160 $$
Comments (0)
