JEE MAIN - Mathematics (2022 - 30th June Morning Shift - No. 5)
Explanation
Given, Binomial expansion,
$${\left( {a{x^{{1 \over 8}}} + b{x^{ - {1 \over {12}}}}} \right)^{10}}$$
General term,
$${T_{r + 1}} = {}^{10}{C_r}\,.\,{\left( {a{x^{{1 \over 8}}}} \right)^{10 - r}}\,.\,{\left( {b{x^{ - {1 \over {12}}}}} \right)^r}$$
$$ = {}^{10}{C_r}\,.\,{a^{10 - r}}\,.\,{b^r}\,.\,{x^{{{10 - r} \over 8}}}\,.\,{x^{ - {r \over {12}}}}$$
$$ = {}^{10}{C_r}\,.\,{a^{10 - r}}\,.\,{b^r}\,.\,{x^{\left( {{{10 - r} \over 8} - {r \over {12}}} \right)}}$$
$$ = {}^{10}{C_r}\,.\,{a^{10 - r}}\,.\,{b^r}\,.\,{x^{{{30 - 3r - 2r} \over {24}}}}$$
$$ = {}^{10}{C_r}\,.\,{a^{10 - r}}\,.\,{b^r}\,.\,{x^{{{30 - 5r} \over {24}}}}$$
For constant term,
$${{30 - 5r} \over {24}} = 0$$
$$ \Rightarrow r = 6$$
$$\therefore$$ Constant term,
$${T_{r + 1}} = {T_{6 + 1}} = {}^{10}{C_6}\,.\,{a^4}\,.\,{b^6}$$
$$ = {{10!} \over {6!\,4!}}{a^4}\,.\,{b^6}$$
$$ = {{10 \times 9 \times 8 \times 7} \over {4 \times 3 \times 2 \times 1}}\,.\,{a^4}\,.\,{b^6}$$
$$ = 210{a^4}{b^6}$$
We know, $$GM \ge HM$$
For terms a2 and b3,
$$\sqrt {{a^2}{b^3}} \ge {2 \over {{1 \over {{a^2}}} + {1 \over {{b^3}}}}}$$
$$ \Rightarrow \sqrt {{a^2}{b^3}} \ge {2 \over 4}$$
$$ \Rightarrow {a^2}{b^3} \ge {1 \over 4}$$
$$ \Rightarrow {({a^2}{b^3})^2} \ge {1 \over {16}}$$
$$\therefore$$ $${a^4}{b^6} \ge {1 \over {16}}$$
$$\therefore$$ Minimum value of $${a^4}{b^6} = {1 \over {16}}$$
$$\therefore$$ Minimum value of constant term
$${T_7} = 210 \times {a^4}{b^6}$$
$$ = 210 \times {1 \over {16}}$$
$$ = {{105} \over 8}$$
Comments (0)
