JEE MAIN - Mathematics (2022 - 30th June Morning Shift - No. 4)
Explanation
Given,
$$A = \left[ {\matrix{ 1 & { - 2} & \alpha \cr \alpha & 2 & { - 1} \cr } } \right]$$
and $$B = \left[ {\matrix{ 2 & \alpha \cr { - 1} & 2 \cr 4 & { - 5} \cr } } \right]$$
$$AB = \left[ {\matrix{ 1 & { - 2} & \alpha \cr \alpha & 2 & { - 1} \cr } } \right]\left[ {\matrix{ 2 & \alpha \cr { - 1} & 2 \cr 4 & { - 5} \cr } } \right]$$
$$ = \left[ {\matrix{ {4 + 4\alpha } & { - 4\alpha - 4} \cr {2\alpha - 6} & {{\alpha ^2} + 9} \cr } } \right]$$
Given,
$$|AB| = 0$$
$$\therefore$$ $$\left| {\matrix{ {4 + 4\alpha } & { - 4\alpha - 4} \cr {2\alpha - 6} & {{\alpha ^2} + 9} \cr } } \right| = 0$$
$$ \Rightarrow (4\alpha + 4)\left| {\matrix{ 1 & { - 1} \cr {2\alpha - 6} & {{\alpha ^2} + 9} \cr } } \right| = 0$$
$$ \Rightarrow (4\alpha + 4)({\alpha ^2} + 9 + 2\alpha - 6) = 0$$
$$ \Rightarrow (4\alpha + 4)({\alpha ^2} + 2\alpha + 3) = 0$$
$$\therefore$$ $$\alpha - = - 1$$
or $${\alpha ^2} + 2\alpha + 3 = 0$$
$${\alpha _1} + {\alpha _2} = - 2$$
$$\therefore$$ Sum of all values of $$\alpha = - 1 - 2 = - 3$$
$$\therefore$$ Absolute value of $$\alpha = | - 3| = 3$$
Comments (0)
