JEE MAIN - Mathematics (2022 - 29th June Morning Shift - No. 6)

If the system of linear equations

2x + y $$-$$ z = 7

x $$-$$ 3y + 2z = 1

x + 4y + $$\delta$$z = k, where $$\delta$$, k $$\in$$ R has infinitely many solutions, then $$\delta$$ + k is equal to:

$$-$$3
3
6
9

Explanation

$$2x + y - z = 7$$

$$x - 3y + 2z = 1$$

$$x + 4y + \delta z = k$$

$$\Delta = \left| {\matrix{ 2 & 1 & { - 1} \cr 1 & { - 3} & 2 \cr 1 & 4 & \delta \cr } } \right| = - 7\delta - 21 = 0$$

$$\delta = - 3$$

$${\Delta _1} = \left| {\matrix{ 7 & 1 & { - 1} \cr 1 & { - 3} & 2 \cr k & 4 & { - 3} \cr } } \right|$$

$$ \Rightarrow 6 - k = 0 \Rightarrow k = 6$$

$$\delta + k = - 3 + 6 = 3$$

Comments (0)

Advertisement