JEE MAIN - Mathematics (2022 - 29th June Morning Shift - No. 2)
Let the solution curve of the differential equation
$$x{{dy} \over {dx}} - y = \sqrt {{y^2} + 16{x^2}} $$, $$y(1) = 3$$ be $$y = y(x)$$. Then y(2) is equal to:
Explanation
Given,
$$x{{dy} \over {dx}} - y = \sqrt {{y^2} + 16x} $$
$$ \Rightarrow x{{dy} \over {dx}} = y + \sqrt {{y^2} + 16x} $$
$$ \Rightarrow {{dy} \over {dx}} = {y \over x} + \sqrt {{{\left( {{y \over x}} \right)}^2} + 16} $$
This is a homogenous different equation.
Let $${y \over x} = v$$
$$ \Rightarrow y = vx$$
$$ \Rightarrow {{dy} \over {dx}} = v + x{{dv} \over {dx}}$$
$$\therefore$$ $$v + x{{dv} \over {dx}} =v+ \sqrt {{v^2} + 16} $$
$$ \Rightarrow $$ $$ x{{dv} \over {dx}} = \sqrt {{v^2} + 16} $$
$$ \Rightarrow {{dv} \over {\sqrt {{v^2} + 16} }} = {{dx} \over x}$$
Integrating both sides, we get
$$\int {{{dv} \over {\sqrt {{v^2} + 16} }} = \int {{{dx} \over x}} } $$
$$ \Rightarrow \ln \left| {v + \sqrt {{v^2} + 16} } \right| = \ln x + \ln c$$
$$ \Rightarrow v + \sqrt {{v^2} + 16} = cx$$
Now putting, $$v = {y \over x}$$, we get
$${y \over x} + \sqrt {{{{y^2}} \over {{x^2}}} + 16} = cx$$
$$ \Rightarrow {y \over x} + \sqrt {{{{y^2} + 16{x^2}} \over {{x^2}}}} = cx$$
$$ \Rightarrow y + \sqrt {{y^2} + 16{x^2}} = c{x^2}$$ ...... (1)
Given, $$y(1) = 3$$
$$\therefore$$ When x = 1 then y = 3.
Putting in equation (1) we get,
$$3 + \sqrt {9 + 16} = c.\,1$$
$$ \Rightarrow c = 8$$
$$\therefore$$ Solution of equation,
$$y + \sqrt {{y^2} + 16{x^2}} = 8{x^2}$$
Now, y(2) means when x = 2 then y = ?
$$\therefore$$ $$y + \sqrt {{y^2} + 16 \times 4} = 8 \times 4$$
$$ \Rightarrow y = 15$$
Comments (0)
