JEE MAIN - Mathematics (2022 - 29th June Morning Shift - No. 16)
Explanation
Mean $$(\overline x ) = {{{x_1} + {x_2} + {x_3} + {x_4} + {x_5}} \over 5}$$
Given, $${{{x_1} + {x_2} + {x_3} + {x_4} + {x_5}} \over 5} = {{24} \over 5}$$
$$ \Rightarrow {x_1} + {x_2} + {x_3} + {x_4} + {x_5} = 24$$ ...... (1)
Now, Mean of first 4 observation
$$ = {{{x_1} + {x_2} + {x_3} + {x_4}} \over 4}$$
Given, $$ = {{{x_1} + {x_2} + {x_3} + {x_4}} \over 4} = {7 \over 2}$$
$$ \Rightarrow {x_1} + {x_2} + {x_3} + {x_4} = 14$$ ...... (2)
From equation (1) and (2), we get
$$14 + {x_5} = 24$$
$$ \Rightarrow {x_5} = 10$$
Now, variance of first 5 observation
$$ = {{\sum {x_i^2} } \over n} - {\left( {\overline x } \right)^2}$$
$$ = {{x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2} \over 5} - {\left( {{{24} \over 5}} \right)^2}$$
Given,
$${{x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2} \over 5} - {\left( {{{24} \over 5}} \right)^2} = {{194} \over {24}}$$
$$ \Rightarrow x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2 = 5\left( {{{194} \over {25}} + {{576} \over {25}}} \right)$$
$$ \Rightarrow x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2 = 154$$
$$ \Rightarrow x_1^2 + x_2^2 + x_3^2 + x_4^2 + {(10)^2} = 154$$
$$ \Rightarrow x_1^2 + x_2^2 + x_3^2 + x_4^2 = 54$$
Now, variance of first 4 observation
$$ = {{x_1^2 + x_2^2 + x_3^2 + x_4^2} \over 4} - {\left( {{7 \over 2}} \right)^2}$$
Given,
$${{x_1^2 + x_2^2 + x_3^2 + x_4^2} \over 4} - {\left( {{7 \over 2}} \right)^2} = a$$
$$ \Rightarrow {{54} \over 4} - {{49} \over 4} = a$$
$$ \Rightarrow a = {5 \over 4}$$
$$\therefore$$ $$4a + {x_5}$$
$$ = 4 \times {5 \over 4} + 10 = 15$$
Comments (0)
