JEE MAIN - Mathematics (2022 - 29th June Morning Shift - No. 13)
$${\left( {3{x^3} - 2{x^2} + {5 \over {{x^5}}}} \right)^{10}}$$ is 2k.l, where l is an odd integer, then the value of k is equal to:
Explanation
The general term of $${\left( {{x_1} + {x_2} + ... + {x_n}} \right)^n}$$ the expansion is
$${{n!} \over {{n_1}!{n_2}!...{n_n}!}}x_1^{{n_1}}x_2^{{n_2}}...x_n^{{n_n}}$$
where n1 + n2 + ..... + nn = n
Given,
$${\left( {3{x^2} - 2{x^2} + {5 \over {{x^5}}}} \right)^{10}}$$
$$ = {{{{(3{x^8} - 2{x^7} + 5)}^{10}}} \over {{x^{50}}}}$$
Now constant term in $${\left( {3{x^3} - 2{x^2} + {5 \over {{x^5}}}} \right)^{10}} = {x^{50}}$$ term in $${(3{x^8} - 2{x^7} + 5)^{10}}$$
General term in $${(3{x^8} - 2{x^7} + 5)^{10}}$$ is
$$ = {{10!} \over {{n_1}!\,{n_2}!\,{n_3}!}}{(3{x^8})^{{n_1}}}{( - 2{x^7})^{{n_2}}}{(5)^{{n_3}}}$$
$$ = {{10!} \over {{n_1}!\,{n_2}!\,{n_3}!}}{(3)^{{n^1}}}{( - 2)^{{n_2}}}{(5)^{{n^3}}}\,.\,{x^{8{n_1} + 7{n_2}}}$$
$$\therefore$$ Coefficient of $${x^{8{n_1} + 7{n_2}}}$$ is
$$ = {{10!} \over {{n_1}!\,{n_2}!\,{n_3}!}}{(3)^{{n_1}}}{( - 2)^{{n_2}}}{(5)^{{n_3}}}$$
where $${n_1} + {n_2} + {n_3} = 0$$
For coefficient of x50 :
$$8{n_1} + 7{n_2} = 50$$
$$\therefore$$ Possible values of n1, n2 and n3 are
n$$_1$$ | n$$_2$$ | n$$_3$$ |
---|---|---|
1 | 6 | 3 |
$$\therefore$$ Coefficient of x50
$$ = {{10!} \over {1!\,6!\,3!}}{(3)^1}{( - 2)^6}{(5)^3}$$
$$ = {{10 \times 9 \times 8 \times 7} \over 6} \times 3 \times {5^3} \times {2^6}$$
$$ = 5 \times 3 \times 8 \times 7 \times 3 \times {5^3} \times {2^6}$$
$$ = 7 \times {5^4} \times {3^2} \times {2^9}$$
$$ = {2^k}\,.\,l$$
$$\therefore$$ $$l = 7 \times {5^4} \times {3^2}$$ = An odd integer
and $${2^k} = {2^9}$$
$$ \Rightarrow k = 9$$
Comments (0)
