JEE MAIN - Mathematics (2022 - 29th July Morning Shift - No. 9)

Let the circumcentre of a triangle with vertices A(a, 3), B(b, 5) and C(a, b), ab > 0 be P(1,1). If the line AP intersects the line BC at the point Q$$\left(k_{1}, k_{2}\right)$$, then $$k_{1}+k_{2}$$ is equal to :
2
$$\frac{4}{7}$$
$$\frac{2}{7}$$
4

Explanation

JEE Main 2022 (Online) 29th July Morning Shift Mathematics - Straight Lines and Pair of Straight Lines Question 48 English Explanation

Let D be mid-point of AC, then

$${{b + 3} \over 2} = 1 \Rightarrow b = - 1$$

Let E be mid-point of BC,

$${{5 - b} \over {b - a}}\,.\,{{{{(3 + b)} \over 2}} \over {{{a + b} \over 2} - 1}} = - 1$$

On putting $$b = - 1$$, we get $$a = 5$$ or $$-3$$

But $$a = 5$$ is rejected as $$ab > 0$$

$$A( - 3,3),\,B( - 1,5),\,C( - 3, - 1),\,P(1,1)$$

Line $$BC \Rightarrow y = 3x + 8$$

Line $$AP \Rightarrow y = {{3 - x} \over 2}$$

Point of intersection $$\left( {{{ - 13} \over 7},{{17} \over 7}} \right)$$

Comments (0)

Advertisement