JEE MAIN - Mathematics (2022 - 29th July Morning Shift - No. 8)
Explanation
$${L_1}:bx + 10y - 8 = 0,\,{L_2}:2x - 3y = 0$$
then $$L:(bx + 10y - 8) + \lambda (2x - 3y) = 0$$
$$\because$$ It passes through $$(1,\,1)$$
$$\therefore$$ $$b + 2 - \lambda = 0 \Rightarrow \lambda = b + 2$$
and touches the circle $${x^2} + {y^2} = {{16} \over {17}}$$
$$\left| {{{{8^2}} \over {{{(2\lambda + b)}^2} + {{(10 - 3\lambda )}^2}}}} \right| = {{16} \over {17}}$$
$$ \Rightarrow 4{\lambda ^2} + {b^2} + 4b\lambda + 100 + 9{\lambda ^2} - 60\lambda = 68$$
$$ \Rightarrow 13{(b + 2)^2} + {b^2} + 4b(b + 2) - 60(b + 2) + 32 = 0$$
$$ \Rightarrow 18{b^2} = 36$$
$$\therefore$$ $${b^2} = 2$$
$$\therefore$$ Eccentricity of ellipse : $${{{x^2}} \over 5} + {{{y^2}} \over {{b^2}}} = 1$$ is
$$\therefore$$ $$e = \sqrt {1 - {2 \over 5}} = \sqrt {{3 \over 5}} $$
Comments (0)
