JEE MAIN - Mathematics (2022 - 29th July Morning Shift - No. 5)

If $$\lim\limits_{x \rightarrow 0} \frac{\alpha \mathrm{e}^{x}+\beta \mathrm{e}^{-x}+\gamma \sin x}{x \sin ^{2} x}=\frac{2}{3}$$, where $$\alpha, \beta, \gamma \in \mathbf{R}$$, then which of the following is NOT correct?
$$\alpha^{2}+\beta^{2}+\gamma^{2}=6$$
$$\alpha \beta+\beta \gamma+\gamma \alpha+1=0$$
$$\alpha\beta^{2}+\beta \gamma^{2}+\gamma \alpha^{2}+3=0$$
$$\alpha^{2}-\beta^{2}+\gamma^{2}=4$$

Explanation

$$\mathop {\lim }\limits_{x \to 0} {{\alpha {e^x} + \beta {e^{ - x}} + \gamma \sin x} \over {x{{\sin }^2}x}} = {2 \over 3}$$

$$ \Rightarrow \alpha + \beta = 0$$ (to make indeterminant form) ...... (i)

Now,

$$\mathop {\lim }\limits_{x \to 0} {{\alpha {e^x} - \beta {e^{ - x}} + \gamma \cos x} \over {3{x^2}}} = {2 \over 3}$$ (Using L-H Rule)

$$ \Rightarrow \alpha - \beta + \gamma = 0$$ (to make indeterminant form) ...... (ii)

Now,

$$\mathop {\lim }\limits_{x \to 0} {{\alpha {e^x} + \beta {e^{ - x}} - \gamma \sin x} \over {6x}} = {2 \over 3}$$ (Using L-H Rule)

$$ \Rightarrow {{\alpha - \beta + \gamma } \over 6} = {2 \over 3}$$

$$ \Rightarrow \alpha - \beta + \gamma = 4$$ ...... (iii)

$$ \Rightarrow \gamma = - 2$$

and (i) + (ii)

$$2\alpha = - \gamma $$

$$ \Rightarrow \alpha = 1$$ and $$\beta = - 1$$

and $$\alpha {\beta ^2} + \beta {\gamma ^2} + \gamma {\alpha ^2} + 3 = 1 - 4 - 2 + 3 = - 2$$

Comments (0)

Advertisement