JEE MAIN - Mathematics (2022 - 29th July Morning Shift - No. 5)
Explanation
$$\mathop {\lim }\limits_{x \to 0} {{\alpha {e^x} + \beta {e^{ - x}} + \gamma \sin x} \over {x{{\sin }^2}x}} = {2 \over 3}$$
$$ \Rightarrow \alpha + \beta = 0$$ (to make indeterminant form) ...... (i)
Now,
$$\mathop {\lim }\limits_{x \to 0} {{\alpha {e^x} - \beta {e^{ - x}} + \gamma \cos x} \over {3{x^2}}} = {2 \over 3}$$ (Using L-H Rule)
$$ \Rightarrow \alpha - \beta + \gamma = 0$$ (to make indeterminant form) ...... (ii)
Now,
$$\mathop {\lim }\limits_{x \to 0} {{\alpha {e^x} + \beta {e^{ - x}} - \gamma \sin x} \over {6x}} = {2 \over 3}$$ (Using L-H Rule)
$$ \Rightarrow {{\alpha - \beta + \gamma } \over 6} = {2 \over 3}$$
$$ \Rightarrow \alpha - \beta + \gamma = 4$$ ...... (iii)
$$ \Rightarrow \gamma = - 2$$
and (i) + (ii)
$$2\alpha = - \gamma $$
$$ \Rightarrow \alpha = 1$$ and $$\beta = - 1$$
and $$\alpha {\beta ^2} + \beta {\gamma ^2} + \gamma {\alpha ^2} + 3 = 1 - 4 - 2 + 3 = - 2$$
Comments (0)
