JEE MAIN - Mathematics (2022 - 29th July Morning Shift - No. 19)

Let the ratio of the fifth term from the beginning to the fifth term from the end in the binomial expansion of $$\left(\sqrt[4]{2}+\frac{1}{\sqrt[4]{3}}\right)^{\mathrm{n}}$$, in the increasing powers of $$\frac{1}{\sqrt[4]{3}}$$ be $$\sqrt[4]{6}: 1$$. If the sixth term from the beginning is $$\frac{\alpha}{\sqrt[4]{3}}$$, then $$\alpha$$ is equal to _________.
Answer
84

Explanation

Fifth term from beginning $$ = {}^n{C_4}{\left( {{2^{{1 \over 4}}}} \right)^{n - 4}}{\left( {{3^{{{ - 1} \over 4}}}} \right)^4}$$

Fifth term from end $$ = {(n - 5 + 1)^{th}}$$ term from begin $$ = {}^n{C_{n - 4}}{\left( {{2^{{1 \over 4}}}} \right)^3}{\left( {{3^{{{ - 1} \over 4}}}} \right)^{n - 4}}$$

Given $${{{}^n{C_4}{2^{{{n - 4} \over 4}}}\,.\,{3^{ - 1}}} \over {{}^n{C_{n - 3}}{2^{{4 \over 4}}}\,.\,{3^{ - \left( {{{n - 4} \over 4}} \right)}}}} = {6^{{1 \over 4}}}$$

$$ \Rightarrow {6^{{{n - 8} \over 4}}} = {6^{{1 \over 4}}}$$

$$ \Rightarrow {{n - 8} \over 4} = {1 \over 4} \Rightarrow n = 9$$

$${T_6} = {T_{5 + 1}} = {}^9{C_5}{\left( {{2^{{1 \over 4}}}} \right)^4}{\left( {{3^{{{ - 1} \over 4}}}} \right)^5}$$

$$ = {{{}^9{C_5}\,.\,2} \over {{3^{{1 \over 4}}}\,.\,3}} = {{84} \over {{3^{{1 \over 4}}}}} = {\alpha \over {{3^{{1 \over 4}}}}}$$

$$ \Rightarrow \alpha = 84.$$

Comments (0)

Advertisement