JEE MAIN - Mathematics (2022 - 29th July Morning Shift - No. 16)
Let $$f(x)=3^{\left(x^{2}-2\right)^{3}+4}, x \in \mathrm{R}$$. Then which of the following statements are true?
$$\mathrm{P}: x=0$$ is a point of local minima of $$f$$
$$\mathrm{Q}: x=\sqrt{2}$$ is a point of inflection of $$f$$
$$R: f^{\prime}$$ is increasing for $$x>\sqrt{2}$$
Explanation
$$f(x) = {3^{{{({x^2} - 2)}^3} + 4}},\,x \in R$$
$$f(x) = {81.3^{{{({x^2} - 2)}^3}}}$$
$$f'(x) = {81.3^{{{({x^2} - 2)}^3}}}\ln 2.3({x^2} - 2)2x$$
$$ = (486\ln 2)\left( {{3^{{{({x^2} - 2)}^3}}}({x^2} - 2)x} \right)$$
$$ \Rightarrow x = 0$$ is the local minima.
$$f''(x) = (486\ln 2)\left( {{3^{{{({x^2} - 2)}^3}}}\,.\,({x^2} - 2)(5{x^2} - 2 + 6{x^2}\ln 3({x^2} - 2))} \right)$$
$$f''(x) = 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x = \sqrt 2 $$
$$f''\left( {{{\sqrt 2 }^ + }} \right) > 0$$
$$f''\left( {{{\sqrt 2 }^ - }} \right) < 0$$
$$ \Rightarrow x = \sqrt 2 $$ is point of inflection
$$f''(x) > 0\,\forall x > \sqrt 2 $$
$$ \Rightarrow f'(x)$$ is increasing for $$x > \sqrt 2 $$
Comments (0)
