JEE MAIN - Mathematics (2022 - 29th July Morning Shift - No. 13)
Explanation
$$H:{{{x^2}} \over 4} - {{{y^2}} \over 4} = 1$$
Focus $$(ae,0)$$
$$F\left( {2\sqrt 2 ,\,0} \right)$$
$$y = mx + c$$ passes through (1, 0)
$$0 = m + C$$ ...... (i)
L is tangent to hyperbola
$$C = \, \pm \,\sqrt {4{m^2} - 4} $$
$$ - m = \, \pm \,\sqrt {4{m^2} - 4} $$
$${m^2} = 4{m^2} - 4$$
$$m = {2 \over {\sqrt 3 }}$$
$$C = {{ - 2} \over {\sqrt 3 }}$$
$$T:y = {2 \over {\sqrt 3 }}x - {2 \over {\sqrt 3 }}$$
$$P:{y^2} = 4x$$
$${y^2} = 4\left( {{{\sqrt 3 y + 2} \over 2}} \right)$$
$${y^2} - 2\sqrt 3 y - 4 = 0$$
Area
$${1 \over 2}\left| {\matrix{ 0 & 0 \cr {{x_1}} & {{y_1}} \cr {2\sqrt 2 } & 0 \cr {{x_2}} & {{y_2}} \cr 0 & 0 \cr } } \right|$$
$$ = \left| {{1 \over 2}\left( { - 2\sqrt 2 {y_1} + 2\sqrt 2 {y_2}} \right)} \right|$$
$$ = \sqrt 2 \left| {{y_2} - {y_1}} \right| = \sqrt 2 \sqrt {{{({y_1} + {y_2})}^2} - 4{y_1}{y_2}} $$
$$ = \sqrt {56} $$
$$ = 2\sqrt {14} $$
Comments (0)
