JEE MAIN - Mathematics (2022 - 29th July Morning Shift - No. 10)

Let $$\hat{a}$$ and $$\hat{b}$$ be two unit vectors such that the angle between them is $$\frac{\pi}{4}$$. If $$\theta$$ is the angle between the vectors $$(\hat{a}+\hat{b})$$ and $$(\hat{a}+2 \hat{b}+2(\hat{a} \times \hat{b}))$$, then the value of $$164 \,\cos ^{2} \theta$$ is equal to :
$$90+27 \sqrt{2}$$
$$45+18 \sqrt{2}$$
$$90+3 \sqrt{2}$$
$$54+90 \sqrt{2}$$

Explanation

$$\widehat a\,.\,\widehat b = {1 \over {\sqrt 2 }}$$ and $$|\widehat a \times \widehat b| = {1 \over {\sqrt 2 }}$$

$${{\left( {\widehat a + \widehat b} \right)\,.\,\left( {\widehat a + 2\widehat b + 2\left( {\widehat a \times \widehat b} \right)} \right)} \over {\left| {\widehat a + \widehat b} \right|\left| {\widehat a + 2\widehat b + 2\left( {\widehat a \times \widehat b} \right)} \right|}} = \cos \theta $$

$$ \Rightarrow \cos \theta = {{1 + 3\widehat a\widehat b + 2} \over {|\widehat a + \widehat b||\widehat a + 2\widehat b + 2(\widehat a \times \widehat b)|}}$$

$$|\widehat a + \widehat b{|^2} = 2 + \sqrt 2 $$

$$|\widehat a + 2\widehat b + 2(\widehat a \times \widehat b){|^2} = 1 + 4 + 4|\widehat a \times \widehat b{|^2} + 4\widehat a\widehat b$$

$$ = 5 + 4\,.\,{1 \over 2} + {4 \over {\sqrt 2 }} = 7 + 2\sqrt 2 $$

So, $${\cos ^2}\theta = {{{{\left( {3 + {3 \over {\sqrt 2 }}} \right)}^2}} \over {(2 + \sqrt 2 )(7 + 2\sqrt 2 )}} = {{9\sqrt 2 (5\sqrt 2 + 3)} \over {164}}$$

$$ \Rightarrow 164{\cos ^2}\theta = 90 + 27\sqrt 2 $$

Comments (0)

Advertisement