JEE MAIN - Mathematics (2022 - 29th July Evening Shift - No. 3)
If the system of equations
$$ \begin{aligned} &x+y+z=6 \\ &2 x+5 y+\alpha z=\beta \\ &x+2 y+3 z=14 \end{aligned} $$
has infinitely many solutions, then $$\alpha+\beta$$ is equal to
Explanation
Given,
$$x + y + z = 6$$ ...... (1)
$$2x + 5y + \alpha z = \beta $$ ..... (2)
$$x + 2y + 3z = 14$$ ...... (3)
System of equation have infinite many solutions.
$$\therefore$$ $${\Delta _x} = {\Delta _y} = {\Delta _z} = 0$$ and $$\Delta = 0$$
Now, $$\Delta = \left| {\matrix{ 1 & 1 & 1 \cr 2 & 5 & \alpha \cr 1 & 2 & 3 \cr } } \right| = 0$$
$${C_1} \to {C_1} - {C_3}$$
$${C_2} \to {C_2} - {C_3}$$
$$ \Rightarrow \left| {\matrix{ 0 & 0 & 1 \cr {2 - \alpha } & {5 - \alpha } & \alpha \cr { - 2} & { - 1} & 3 \cr } } \right| = 0$$
$$ \Rightarrow - 2 + \alpha + 10 - 2\alpha = 0$$
$$ \Rightarrow 8 - \alpha = 0$$
$$ \Rightarrow \alpha = 8$$
Now, $$x + y + z = 6$$
$$2x + 5y + 8z = \beta $$
$$x + 2y + 3z = 14$$
$$\therefore$$ $${\Delta _x} = \left| {\matrix{ 6 & 1 & 1 \cr \beta & 5 & 8 \cr {14} & 2 & 3 \cr } } \right| = 0$$
$${C_1} \to {C_1} - 6{C_3}$$
$${C_2} \to {C_2} - {C_3}$$
$$ \Rightarrow \left| {\matrix{ 0 & 0 & 1 \cr {\beta - 48} & { - 3} & 8 \cr { - 4} & { - 1} & 3 \cr } } \right| = 0$$
$$ \Rightarrow - \beta + 48 - 12 = 0$$
$$ \Rightarrow \beta = 36$$
$$\therefore$$ $$\alpha + \beta = 8 + 36 = 44$$
Comments (0)
