JEE MAIN - Mathematics (2022 - 29th July Evening Shift - No. 1)
Explanation
We know,
$$\left| {|{z_1}| - |{z_2}|} \right| \le \left| {{z_1} + {z_2}} \right| \le |{z_1}| + |{z_2}|$$
$$\therefore$$ $$\left| {|z| - {1 \over {|z|}}} \right| \le \left| {z - {1 \over z}} \right|$$
$$ \Rightarrow \left| {|z| - {1 \over {|z|}}} \right| \le 2$$ [Given $$\left| {z - {1 \over z}} \right| = 2$$]
$$ \Rightarrow \left| {{{|z{|^2} - 1} \over {|z|}}} \right| \le 2$$
$$ \Rightarrow - 2 \le {{|z{|^2} - 1} \over {|z|}} \le 2$$
$$\therefore$$ $${{|z{|^2} - 1} \over {|z|}} \le 2$$
$$ \Rightarrow |z{|^2} - 1 \le 2|z|$$
$$ \Rightarrow |z{|^2} - 2|z| - 1 \le 0$$
$$ \Rightarrow |z{|^2} - 2|z| + 1 - 2 \le 0$$
$$ \Rightarrow {(|z| - 1)^2} - 2 \le 0$$
$$ \Rightarrow - \sqrt 2 \le |z| - 1 \le \sqrt 2 $$
$$ \Rightarrow 1 - \sqrt 2 \le |z| \le 1 + \sqrt 2 $$ ..... (1)
or
$$ - 2 \le {{|z{|^2} - 1} \over {|z|}}$$
$$ \Rightarrow |z{|^2} - 1 \le - 2|z|$$
$$ \Rightarrow |z{|^2} + 2|z| - 1 \le 0$$
$$ \Rightarrow |z{|^2} + 2|z| + 1 - 2 \le 0$$
$$ \Rightarrow {(|z| + 1)^2} - 2 \le 0$$
$$ \Rightarrow - \sqrt 2 \le |z| + 1 \le + \,\sqrt 2 $$
$$ \Rightarrow - \sqrt 2 - 1 \le |z| \le \sqrt 2 - 1$$ ...... (2)
From (1) and (2) we get,
Maximum value of $$|z| = \sqrt 2 + 1$$ and minimum value of $$|z| = - \sqrt 2 - 1$$
Comments (0)
