JEE MAIN - Mathematics (2022 - 28th June Evening Shift - No. 5)
If n arithmetic means are inserted between a and 100 such that the ratio of the first mean to the last mean is 1 : 7 and a + n = 33, then the value of n is :
21
22
23
24
Explanation
a, A1, A2 ........... An, 100
Let d be the common difference of above A.P. then
$${{a + d} \over {100 - d}} = {1 \over 7}$$
$$ \Rightarrow 7a + 8d = 100$$ ...... (i)
and $$a + n = 33$$ ..... (ii)
and $$100 = a + (n + 1)d$$
$$ \Rightarrow 100 = a + (34 - a){{(100 - 7a)} \over 8}$$
$$ \Rightarrow 800 = 8a + 7{a^2} - 338a + 3400$$
$$ \Rightarrow 7{a^2} - 330a + 2600 = 0$$
$$ \Rightarrow a = 10,\,{{260} \over 7},$$ but $$a \ne {{260} \over 7}$$
$$\therefore$$ $$n = 23$$
Comments (0)
