JEE MAIN - Mathematics (2022 - 28th June Evening Shift - No. 4)
$$(1 - {x^2} + 3{x^3}){\left( {{5 \over 2}{x^3} - {1 \over {5{x^2}}}} \right)^{11}},\,x \ne 0$$ is :
Explanation
General term of Binomial expansion $${\left( {{5 \over 2}{x^3} - {1 \over {5{x^2}}}} \right)^{11}}$$ is
$${T_{r + 1}} = {}^{11}{C_r}\,.\,{\left( {{5 \over 2}{x^3}} \right)^{11 - r}}\,.\,{\left( { - {1 \over {5{x^2}}}} \right)^r}$$
$$ = {}^{11}{C_r}\,.\,{\left( {{5 \over 2}} \right)^{11 - r}}\,.\,{\left( { - {1 \over 5}} \right)^r}\,.\,{x^{33 - 5r}}$$
In the term,
$$\left( {1 - {x^2} + 3{x^3}} \right){\left( {{5 \over 2}{x^3} - {1 \over {5{x^2}}}} \right)^{11}}$$
Term independent of x is when
(1) $$33 - 5r = 0$$
$$ \Rightarrow r = {{33} \over 5}\,\, \notin $$ integer
(2) $$33 - 5r = -2$$
$$ \Rightarrow 5r = 35$$
$$ \Rightarrow r = 7\,\, \in $$ integer
(3) $$33 - 5r = - 3$$
$$ \Rightarrow 5r = 36$$
$$ \Rightarrow r = {{36} \over 5}\,\, \notin $$ integer
$$\therefore$$ Only for r = 7 independent of x term possible.
$$\therefore$$ Independent of x term
$$ = - \left( {{}^{11}{C_7}{{\left( {{5 \over 2}} \right)}^4}\,.\,{{\left( { - {1 \over 5}} \right)}^7}} \right)$$
$$ = - \left( {{{11\,.\,10\,.\,9\,.\,8} \over {4\,.\,3\,.\,2\,.\,1}}\,.\,{{{5^4}} \over {{2^4}}}\,.\, - {1 \over {{5^7}}}} \right)$$
$$ = {{11\,.\,10\,.\,3} \over {{2^4}\,.\,{5^3}}}$$
$$ = {{11\,.\,3} \over {{2^3}\,.\,{5^2}}}$$
$$ = {{33} \over {200}}$$
Comments (0)
