JEE MAIN - Mathematics (2022 - 28th June Evening Shift - No. 17)
$$\mathop {\lim }\limits_{n \to \infty } 6\tan \left\{ {\sum\limits_{r = 1}^n {{{\tan }^{ - 1}}\left( {{1 \over {{r^2} + 3r + 3}}} \right)} } \right\}$$ is equal to :
Explanation
$$\mathop {\lim }\limits_{n \to \infty } 6\tan \left\{ {\sum\limits_{r = 1}^n {{{\tan }^{ - 1}}\left( {{1 \over {{r^2} + 3r + 3}}} \right)} } \right\}$$
$$ = \mathop {\lim }\limits_{n \to \infty } 6\tan \left\{ {\sum\limits_{r = 1}^n {{{\tan }^{ - 1}}\left( {{{(r + 2) - (r + 1)} \over {1 + (r + 2)(r + 1)}}} \right)} } \right\}$$
$$ = \mathop {\lim }\limits_{n \to \infty } 6\tan \left\{ {\sum\limits_{r = 1}^n {({{\tan }^{ - 1}}(r + 2) - {{\tan }^{ - 1}}(r + 1))} } \right\}$$
$$ = \mathop {\lim }\limits_{n \to \infty } 6\tan \left\{ {{{\tan }^{ - 1}}(n + 2) - {{\tan }^{ - 1}}2} \right\}$$
$$ = 6\tan \left\{ {{\pi \over 2} - {{\cot }^{ - 1}}\left( {{1 \over 2}} \right)} \right\}$$
$$ = 6\tan \left( {{{\tan }^{ - 1}}\left( {{1 \over 2}} \right)} \right)$$
$$ = 3$$
Comments (0)
