JEE MAIN - Mathematics (2022 - 28th June Evening Shift - No. 11)
Let the slope of the tangent to a curve y = f(x) at (x, y) be given by 2 $$\tan x(\cos x - y)$$. If the curve passes through the point $$\left( {{\pi \over 4},0} \right)$$, then the value of $$\int\limits_0^{\pi /2} {y\,dx} $$ is equal to :
$$(2 - \sqrt 2 ) + {\pi \over {\sqrt 2 }}$$
$$2 - {\pi \over {\sqrt 2 }}$$
$$(2 + \sqrt 2 ) + {\pi \over {\sqrt 2 }}$$
$$2 + {\pi \over {\sqrt 2 }}$$
Explanation
$${{dy} \over {dx}} = 2\tan x(\cos x - y)$$
$$ \Rightarrow {{dy} \over {dx}} + 2\tan xy = 2\sin x$$
$$I.F. = {e^{\int {2\tan xdx} }} = {\sec ^2}x$$
$$\therefore$$ Solution of D.E. will be
$$y(x){\sec ^2}x = \int {2\sin x{{\sec }^2}xdx} $$
$$y{\sec ^2}x = 2\sec x + c$$
$$\because$$ Curve passes through $$\left( {{\pi \over 4},0} \right)$$
$$\therefore$$ $$c = - 2\sqrt 2 $$
$$\therefore$$ $$y = 2\cos x - 2\sqrt 2 {\cos ^2}x$$
$$\therefore$$ $$\int_0^{\pi /2} {ydx = \int_0^{\pi /2} {(2\cos x - 2\sqrt 2 {{\cos }^2}x)\,dx} } $$
$$ = 2 - 2\sqrt 2 \,.\,{\pi \over 4} = 2 - {\pi \over {\sqrt 2 }}$$
Comments (0)
