JEE MAIN - Mathematics (2022 - 28th July Morning Shift - No. 4)

Considering the principal values of the inverse trigonometric functions, the sum of all the solutions of the equation $$\cos ^{-1}(x)-2 \sin ^{-1}(x)=\cos ^{-1}(2 x)$$ is equal to :
0
1
$$\frac{1}{2}$$
$$-\frac{1}{2}$$

Explanation

$${\cos ^{ - 1}}x - 2{\sin ^{ - 1}}x = {\cos ^{ - 1}}2x$$

For Domain : $$x \in \left[ {{{ - 1} \over 2},{1 \over 2}} \right]$$

$${\cos ^{ - 1}}x - 2\left( {{\pi \over 2} - {{\cos }^{ - 1}}x} \right) = {\cos ^{ - 1}}(2x)$$

$$ \Rightarrow {\cos ^{ - 1}}x + 2{\cos ^{ - 1}}x = \pi + {\cos ^{ - 1}}2x$$

$$ \Rightarrow \cos (3{\cos ^{ - 1}}x) = - \cos ({\cos ^{ - 1}}2x)$$

$$ \Rightarrow 4{x^3} = x$$

$$ \Rightarrow x = 3,\, \pm \,{1 \over 2}$$

Comments (0)

Advertisement