JEE MAIN - Mathematics (2022 - 28th July Morning Shift - No. 23)

$$\lim\limits_{x \rightarrow 0}\left(\frac{(x+2 \cos x)^{3}+2(x+2 \cos x)^{2}+3 \sin (x+2 \cos x)}{(x+2)^{3}+2(x+2)^{2}+3 \sin (x+2)}\right)^{\frac{100}{x}}$$ is equal to ___________.
Answer
1

Explanation

Let $$x + 2\cos x = a$$

$$x + 2 = b$$

as $$x \to 0$$, $$a \to 2$$ and $$b \to 2$$

$$\mathop {\lim }\limits_{x \to 0} {\left( {{{{a^3} + 2{a^2} + 3\sin a} \over {{b^3} + 2{b^2} + 3\sin b}}} \right)^{{{100} \over x}}}$$

$$ = {e^{\mathop {\lim }\limits_{x \to 0} \,.\,{{100} \over x}\,.\,{{({a^3} - {b^3}) + 2({a^2} - {b^2}) + 3(\sin a - \sin b)} \over {{b^3} + 2{b^2} + 3\sin b}}}}$$

$$\because$$ $$\mathop {\lim }\limits_{x \to 0} {{a - b} \over x} = \mathop {\lim }\limits_{x \to 0} {{2(\cos x - 1)} \over x} = 0$$

$$ = {e^0}$$

$$ = 1$$

Comments (0)

Advertisement