JEE MAIN - Mathematics (2022 - 28th July Morning Shift - No. 19)
Explanation
Put $$x = \tan \theta \Rightarrow dx = {\sec ^2}\theta \,d\theta $$
$$ \Rightarrow I = \int\limits_0^{{\pi \over 3}} {{{15{{\tan }^3}\theta \,.\,{{\sec }^2}\theta \,d\theta } \over {\sqrt {1 + {{\tan }^2}\theta + \sqrt {{{\sec }^6}\theta } } }}} $$
$$ \Rightarrow I = \int\limits_0^{{\pi \over 3}} {{{15{{\tan }^2}\theta {{\sec }^2}\theta \,d\theta } \over {\sec \theta \sqrt {1 + \sec \theta } }}} $$
$$ \Rightarrow I = \int\limits_0^{{\pi \over 3}} {{{15({{\sec }^2}\theta - 1)\sec \theta \tan \theta \,d\theta } \over {\left( {\sqrt {1 + \sec \theta } } \right)}}} $$
Now put $$1 + \sec \theta = {t^2}$$
$$ \Rightarrow \sec \theta \tan \theta \,d\theta = 2tdt$$
$$ \Rightarrow I = \int\limits_{\sqrt 2 }^{\sqrt 3 } {{{15\left( {{{({t^2} - 1)}^2} - 1} \right)2t\,dt} \over t}} $$
$$ \Rightarrow I = 30\int\limits_{\sqrt 2 }^{\sqrt 3 } {({t^4} - 2{t^2} + 1 - 1)\,dt} $$
$$ \Rightarrow I = 30\int\limits_{\sqrt 2 }^{\sqrt 3 } {({t^4} - 2{t^2})\,dt} $$
$$ \Rightarrow I = \left. {30\left( {{{{t^5}} \over 5} - {{2{t^3}} \over 3}} \right)} \right|_{\sqrt 2 }^{\sqrt 3 }$$
$$ = 30\left[ {\left( {{9 \over 5}\sqrt 3 - 2\sqrt 3 } \right) - \left( {{{4\sqrt 2 } \over 5} - {{4\sqrt 2 } \over 3}} \right)} \right]$$
$$ = \left( {54\sqrt 3 - 60\sqrt 3 } \right) - \left( {24\sqrt 2 - 40\sqrt 2 } \right)$$
$$ = 16\sqrt 2 - 6\sqrt 3 $$
$$\therefore$$ $$\alpha = 16$$ and $$\beta = - 6$$
$$\alpha + \beta = 10.$$
Comments (0)
